A291660 a(n) = 2*a(n-1) - a(n-2) + a(n-4) for n>3, a(0)=2, a(1)=3, a(2)=5, a(3)=7, a sequence related to Lucas numbers.
2, 3, 5, 7, 11, 18, 30, 49, 79, 127, 205, 332, 538, 871, 1409, 2279, 3687, 5966, 9654, 15621, 25275, 40895, 66169, 107064, 173234, 280299, 453533, 733831, 1187363, 1921194, 3108558, 5029753, 8138311, 13168063, 21306373, 34474436, 55780810, 90255247, 146036057, 236291303
Offset: 0
Keywords
Links
- OEIS Wiki, Autosequence
- Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 1).
Programs
-
GAP
L:=[2,3,5,7];; for i in [5..10^3] do L[i]:=2*L[i-1]-L[i-2]+L[i-4]; od; L; # Muniru A Asiru, Sep 02 2017
-
Mathematica
LinearRecurrence[{2, -1, 0, 1}, {2, 3, 5, 7}, 40]
Formula
G.f.: (2 - x + x^2)/(1 - 2*x + x^2 - x^4).
a(3n) = A097924(n).
a(3n) + a(3n+1) = a(3n+2).
a(n) = (1/15)*2^(-n-1)*((30-9*sqrt(5))*(1-sqrt(5))^n + (1+sqrt(5))^n*(30 + 9*sqrt(5)) + 5*2^(n+1)*sqrt(3)*sin(n*Pi/3)).
Comments