cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291660 a(n) = 2*a(n-1) - a(n-2) + a(n-4) for n>3, a(0)=2, a(1)=3, a(2)=5, a(3)=7, a sequence related to Lucas numbers.

Original entry on oeis.org

2, 3, 5, 7, 11, 18, 30, 49, 79, 127, 205, 332, 538, 871, 1409, 2279, 3687, 5966, 9654, 15621, 25275, 40895, 66169, 107064, 173234, 280299, 453533, 733831, 1187363, 1921194, 3108558, 5029753, 8138311, 13168063, 21306373, 34474436, 55780810, 90255247, 146036057, 236291303
Offset: 0

Views

Author

Keywords

Comments

The array of successive differences begins:
2, 3, 5, 7, 11, 18, 30, 49, 79, 127, ... = a(n)
1, 2, 2, 4, 7, 12, 19, 30, 48, 78, ... = b(n)
1, 0, 2, 3, 5, 7, 11, 18, 30, 49, ... = a(n-2)
-1, 2, 1, 2, 2, 4, 7, 12, 19, 30, ... = b(n-2)
3, -1, 1, 0, 2, 3, 5, 7, 11, 18, ... = a(n-4)
...
Main diagonal is 2,2,2,... = A007395.
Adding a(n) and first column with alternating signs, one gets two autosequences: 2*Lucas numbers A000032 (2, 1, 3, 4, 7, 11, 18, ...) or 2*A286350 (0, 2, 2, 3, 4, 7, 12, ...) according to signs.

Crossrefs

Programs

  • GAP
    L:=[2,3,5,7];; for i in [5..10^3] do L[i]:=2*L[i-1]-L[i-2]+L[i-4]; od; L;  #  Muniru A Asiru, Sep 02 2017
  • Mathematica
    LinearRecurrence[{2, -1, 0, 1}, {2, 3, 5, 7}, 40]

Formula

G.f.: (2 - x + x^2)/(1 - 2*x + x^2 - x^4).
a(3n) = A097924(n).
a(3n) + a(3n+1) = a(3n+2).
a(n) = (1/15)*2^(-n-1)*((30-9*sqrt(5))*(1-sqrt(5))^n + (1+sqrt(5))^n*(30 + 9*sqrt(5)) + 5*2^(n+1)*sqrt(3)*sin(n*Pi/3)).