A291719 Numbers occurring in Ezra Ehrenkrantz's "Modular Coordination System".
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 27, 30, 32, 36, 40, 45, 48, 54, 60, 64, 72, 80, 90, 96, 108, 120, 128, 144, 180, 192, 216, 240, 288, 360, 384, 432, 576, 720, 1152
Offset: 1
Examples
The number pattern in three dimensions: A B C D E Plate 3 +---+-----+-----+-----+-----+ /| 9 18 36 72 144 | / | 18 36 72 144 288 | / | 27 54 108 216 432 | / | 45 90 180 360 720 | / | 72 144 288 576 1152 | / +---+-----+-----+-----+-----+ / A B C D E / Plate 2 /---+-----+-----+-----+-----+ / /| 3 6 12 24 48 | / / | 6 12 24 48 96 | / / | 9 18 36 72 144 | / / | 15 30 60 120 240 | / / | 24 48 96 192 384 |/ / +---+-----+-----+-----+-----/ / A B C D E / +---+-----+-----+-----+-----+ Plate 1 | 1 2 4 8 16 | / | 2 4 8 16 32 | / | 3 6 12 24 48 | / | 5 10 20 40 80 | / | 8 16 32 64 128 |/ +---+-----+-----+-----+-----+
References
- Ezra Ehrenkrantz, Modular Number Pattern, Tiranti, London 1956.
Links
- Jay Kappraff, Musical Proportions at the Basis of Systems of Architectural Proportion both Ancient and Modern, Chapter 37 in Volume I of K. Williams and M.J. Ostwald (eds.), Architecture and Mathematics from Antiquity to the Future, DOI 10.1007/978-3-319-00137-1_37, Springer International Publishing Switzerland 2015
Programs
-
Maple
with(combinat): {seq(seq(seq(fibonacci(i+2)*2^j*3^k, k=0..2), j=0..4), i=0..4)}[]; # Alois P. Heinz, Aug 30 2017
Formula
Numbers of the form Fibonacci(i+2)*2^j*3^k; i, j=0..4, k=0..2.
Comments