cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A291655 Expansion of Product_{k>=1} 1/(1-x^(k^2))^(k^2).

Original entry on oeis.org

1, 1, 1, 1, 5, 5, 5, 5, 15, 24, 24, 24, 44, 80, 80, 80, 131, 221, 266, 266, 386, 566, 746, 746, 990, 1474, 1924, 2089, 2529, 3709, 4609, 5269, 6130, 8576, 11096, 12746, 14937, 19397, 25697, 28997, 34111, 43135, 56365, 65905, 76219, 95770, 120070, 144370, 163661
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1-x^(k^2))^(k^2), {k,1,nmax}], {x,0,nmax}], x]

Formula

log(a(n)) ~ 5 * Pi^(1/5) * Zeta(5/2)^(2/5) * n^(3/5) / (2^(6/5) * 3^(3/5)).

A291721 Expansion of Product_{k>=1} ((1 + x^(k^3))/(1 - x^(k^3)))^(k^3).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 18, 34, 34, 34, 34, 34, 34, 34, 162, 290, 290, 290, 290, 290, 290, 290, 978, 1666, 1666, 1720, 1774, 1774, 1774, 1774, 4590, 7406, 7406, 8270, 9134, 9134, 9134, 9134, 18558, 27982, 27982, 34894, 41806, 41806, 41806, 41806, 68814, 95822
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2017

Keywords

Comments

Convolution of A291692 and A291720.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[((1 + x^(k^3))/(1 - x^(k^3)))^(k^3), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

log(a(n)) ~ 7 * ((2^(7/3)-1) * Gamma(1/3) * Zeta(7/3))^(3/7) * n^(4/7) / (2^(12/7) * 3^(9/7)).

A303168 Expansion of Product_{k>=1} 1/(1 - x^(k^3))^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 10, 10, 10, 13, 13, 13, 13, 13, 18, 18, 18, 24, 24, 24, 24, 24, 30, 30, 30, 39, 39, 39, 39, 39, 46, 46, 46, 58, 58, 58, 64, 64, 72, 72, 72, 87, 87, 87, 99, 99, 112, 112, 112, 130, 130, 130, 148, 148, 166, 166, 166, 187
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Comments

Number of partitions of n into 1 kind of part 1, 2 kinds of part 8, 3 kinds of part 27, ..., k kinds of part k^3.

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1/(1 - x^k^3)^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^A000578(k))^k.
Showing 1-3 of 3 results.