cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291772 Number of minimal dominating sets in the 2n-crossed prism graph.

Original entry on oeis.org

4, 12, 61, 316, 1304, 5223, 21557, 90404, 377863, 1572942, 6545785, 27262279, 113572619, 473082153, 1970443556, 8207168564, 34184621296, 142386794787, 593071821262, 2470268797246, 10289192009129, 42856677944829, 178507203892808, 743520516941183
Offset: 1

Views

Author

Eric W. Weisstein, Aug 31 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (4 - 4 x + 21 x^2 + 68 x^3 + 10 x^4)/(1 - 4 x + 2 x^2 - 7 x^3 - 17 x^4 - 2 x^5), {x, 0, 24}], x] (* Michael De Vlieger, Aug 31 2017 *)
    LinearRecurrence[{4,-2,7,17,2},{4,12,61,316,1304},30] (* Harvey P. Dale, Jul 02 2019 *)
    Table[RootSum[-2 - 17 # - 7 #^2 + 2 #^3 - 4 #^4 + #^5 &, #^n &], {n, 20}] (* Eric W. Weisstein, Sep 08 2021 *)
  • PARI
    Vec((4 - 4*x + 21*x^2 + 68*x^3 + 10*x^4)/(1 - 4*x + 2*x^2 - 7*x^3 - 17*x^4 - 2*x^5)+O(x^30)) \\ Andrew Howroyd, Aug 31 2017
    
  • PARI
    \\ sequence prepended by a 5:
    polsym(-2 - 17*x - 7*x^2 + 2*x^3 - 4*x^4 + x^5, 24) \\ Joerg Arndt, Sep 08 2021

Formula

From Andrew Howroyd, Aug 31 2017: (Start)
a(n) = 4*a(n-1) - 2*a(n-2) + 7*a(n-3) + 17*a(n-4) + 2*a(n-5) for n > 5.
G.f.: x*(4 - 4*x + 21*x^2 + 68*x^3 + 10*x^4)/(1 - 4*x + 2*x^2 - 7*x^3 - 17*x^4 - 2*x^5).
(End)

Extensions

a(1) and terms a(7) and beyond from Andrew Howroyd, Aug 31 2017