cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291773 Domination number of the n-Apollonian network.

Original entry on oeis.org

1, 1, 3, 4, 7, 16, 43, 124, 367, 1096, 3283, 9844, 29527, 88576, 265723, 797164, 2391487, 7174456, 21523363, 64570084, 193710247, 581130736, 1743392203, 5230176604, 15690529807, 47071589416, 141214768243, 423644304724, 1270932914167, 3812798742496
Offset: 1

Views

Author

Eric W. Weisstein, Aug 31 2017

Keywords

Comments

Also, the connected domination number of the n-Apollonian network. - Andrew Howroyd, Jan 16 2018

Crossrefs

Cf. A298105.

Programs

  • Mathematica
    (* Start from Eric W. Weisstein, Jan 17 2018 *)
    Join[{1, 1}, Table[(3^(n - 3) + 5)/2, {n, 3, 20}]]
    Join[{1, 1}, Table[(3^n + 135)/54, {n, 3, 20}]]
    Join[{1, 1}, (3^Range[3, 20] + 135)/54]
    Join[{1, 1}, LinearRecurrence[{4, -3}, {3, 4}, 20]]
    CoefficientList[Series[(1 - 3 x + 2 x^2 - 5 x^3)/(1 - 4 x + 3 x^2), {x, 0, 20}], x]
    (* End *)
  • PARI
    \\ here d0..d3 are for 0..3 outside vertices included in dominating set.
    D(d0,d1,d2,d3) = {[min(3*d0,1+3*d1), min(d0+2*d1,1+d1+2*d2), min(2*d1+d2,1+2*d2+d3), min(3*d2,1+3*d3)]}
    a(n)={my(v=[1,0,0,0]); for(i=2,n,v=D(v[1],v[2],v[3],v[4])); min(min(v[1],1+v[2]),min(2+v[3],3+v[4]))} \\ Andrew Howroyd, Sep 01 2017
    
  • PARI
    Vec(x*(1 - 3*x + 2*x^2 - 5*x^3) / ((1 - x)*(1 - 3*x)) + O(x^40)) \\ Colin Barker, Oct 03 2017

Formula

a(n) = (3^(n-3) + 5) / 2 for n > 2. - Andrew Howroyd, Sep 01 2017
From Colin Barker, Oct 03 2017: (Start)
G.f.: x*(1 - 3*x + 2*x^2 - 5*x^3) / ((1 - x)*(1 - 3*x)).
a(n) = 4*a(n-1) - 3*a(n-2) for n>4.
(End)
a(n) = A289521(n-3) for n > 3. - Andrew Howroyd, Jan 16 2018

Extensions

a(7)-a(30) from Andrew Howroyd, Sep 01 2017