cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A298105 Number of connected dominating sets in the n-Apollonian network.

Original entry on oeis.org

15, 96, 30208, 1562294353920, 458842788759956138092569943104028672
Offset: 1

Views

Author

Eric W. Weisstein, Jan 12 2018

Keywords

Comments

Term a(6) has 107 decimal digits and a(7) has 320 decimal digits. - Andrew Howroyd, Jan 16 2018

Crossrefs

Programs

  • Mathematica
    {1, 3, 3, 1} . # & /@ NestList[Function[{t0, t1, t2, t3}, {t1^3, t1 t2^2, t1^2 t2 + t2^2 t3, t2^3 + t3^3}] @@ # &, {1, 2, 2, 2}, 4] (* Eric W. Weisstein, Jan 17 2018 *)
  • PARI
    \\ here t0..t3 are for 0..3 outside vertices included in set.
    D(t0,t1,t2,t3)={[t1^3, t1*t2^2, t1^2*t2 + t2^2*t3, t2^3 + t3^3]}
    a(n)={my(v=[1,2,2,2]); for(i=2, n, v=D(v[1], v[2], v[3], v[4])); v[1]+3*v[2]+3*v[3]+v[4]}

Extensions

Terms a(4) and beyond from Andrew Howroyd, Jan 16 2018

A347500 Number of dominating sets in the n-Apollonian network.

Original entry on oeis.org

15, 109, 42953, 2960403451017, 1380531364206778111844580887042461529
Offset: 1

Views

Author

Eric W. Weisstein, Sep 04 2021

Keywords

Comments

Term a(6) has 108 decimal digits and a(7) has 323 decimal digits. - Andrew Howroyd, May 29 2025

Crossrefs

Programs

  • Mathematica
    Map[
      Sum[Binomial[3, k] #[[k + 1]] x^k, {k, 0, 3}] &,
      NestList[Function[{e0, e1, e2, e3}, {e0^3 + e1^3 x, e1^2 e0 + e2^2 e1 x, e2 e1^2 + e3 e2^2 x, e2^3 + e3^3 x}] @@ # &, {x, 1 + x, 1 + x, 1 + x}, 4]
    ] /. x -> 1 (* Eric W. Weisstein, Sep 03 2025 *)
  • PARI
    \\ here e0..e3 are for 0..3 outside vertices included in dominating set.
    step(S,x)={my([e0,e1,e2,e3]=S); [e0^3 + e1^3*x, e1^2*e0 + e2^2*e1*x, e2*e1^2 + e3*e2^2*x, e2^3 + e3^3*x]}
    a(n,x=1)={my(S=[x,1+x,1+x,1+x]); for(i=2, n, S=step(S,x)); sum(k=0, 3, binomial(3,k) * S[1+k] * x^k)} \\ Andrew Howroyd, May 29 2025

Extensions

a(4) onwards from Andrew Howroyd, May 29 2025

A289021 Number of maximal independent vertex sets and minimal vertex covers in the n-Apollonian network.

Original entry on oeis.org

4, 5, 15, 845, 403227665, 64175114443109790962237345, 264288160993294964501375691029638701718807009656135518176301450923295365341665
Offset: 1

Views

Author

Andrew Howroyd, Sep 01 2017

Keywords

Comments

Term a(8) has 233 decimal digits.
The size of the largest maximal independent vertex set, the independence number, is given by 3^(n-1). For n > 1, the size of the smallest such set, the independent domination number, is given by 3^(n-2).
Also, for n > 1 the number of independent vertex sets and vertex covers in the (n-1)-Apollonian network.

Crossrefs

Cf. A291773.

Programs

  • Mathematica
    {1, 3} . # & /@ NestList[Function[{t, u}, {t^3 + u^3, t u^2}] @@ # &, {1, 1}, 6] (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    \\ here t0..t1 are for 0..1 outside vertices included in set
    T(t0,t1,x) = {[t0^3+t1^3*x, t0*t1^2]}
    p(n,x)={my(v=[x,1]); for(i=2,n,v=T(v[1],v[2],x)); v[1]+3*v[2]*x}
    a(n)=p(n,1);

A302487 Total domination number of the n-Apollonian network.

Original entry on oeis.org

2, 2, 3, 4, 7, 16, 43, 124, 367, 1096, 3283, 9844, 29527, 88576, 265723, 797164, 2391487, 7174456, 21523363, 64570084, 193710247, 581130736, 1743392203, 5230176604, 15690529807, 47071589416, 141214768243, 423644304724, 1270932914167, 3812798742496
Offset: 1

Views

Author

Eric W. Weisstein, Apr 08 2018

Keywords

Crossrefs

Formula

a(n) = (3^(n-3) + 5) / 2 = A291773(n) for n >= 3. - Andrew Howroyd, May 29 2025

Extensions

a(8)-a(9) corrected and a(10) onwards from Andrew Howroyd, May 29 2025
Showing 1-4 of 4 results.