cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A291773 Domination number of the n-Apollonian network.

Original entry on oeis.org

1, 1, 3, 4, 7, 16, 43, 124, 367, 1096, 3283, 9844, 29527, 88576, 265723, 797164, 2391487, 7174456, 21523363, 64570084, 193710247, 581130736, 1743392203, 5230176604, 15690529807, 47071589416, 141214768243, 423644304724, 1270932914167, 3812798742496
Offset: 1

Views

Author

Eric W. Weisstein, Aug 31 2017

Keywords

Comments

Also, the connected domination number of the n-Apollonian network. - Andrew Howroyd, Jan 16 2018

Crossrefs

Cf. A298105.

Programs

  • Mathematica
    (* Start from Eric W. Weisstein, Jan 17 2018 *)
    Join[{1, 1}, Table[(3^(n - 3) + 5)/2, {n, 3, 20}]]
    Join[{1, 1}, Table[(3^n + 135)/54, {n, 3, 20}]]
    Join[{1, 1}, (3^Range[3, 20] + 135)/54]
    Join[{1, 1}, LinearRecurrence[{4, -3}, {3, 4}, 20]]
    CoefficientList[Series[(1 - 3 x + 2 x^2 - 5 x^3)/(1 - 4 x + 3 x^2), {x, 0, 20}], x]
    (* End *)
  • PARI
    \\ here d0..d3 are for 0..3 outside vertices included in dominating set.
    D(d0,d1,d2,d3) = {[min(3*d0,1+3*d1), min(d0+2*d1,1+d1+2*d2), min(2*d1+d2,1+2*d2+d3), min(3*d2,1+3*d3)]}
    a(n)={my(v=[1,0,0,0]); for(i=2,n,v=D(v[1],v[2],v[3],v[4])); min(min(v[1],1+v[2]),min(2+v[3],3+v[4]))} \\ Andrew Howroyd, Sep 01 2017
    
  • PARI
    Vec(x*(1 - 3*x + 2*x^2 - 5*x^3) / ((1 - x)*(1 - 3*x)) + O(x^40)) \\ Colin Barker, Oct 03 2017

Formula

a(n) = (3^(n-3) + 5) / 2 for n > 2. - Andrew Howroyd, Sep 01 2017
From Colin Barker, Oct 03 2017: (Start)
G.f.: x*(1 - 3*x + 2*x^2 - 5*x^3) / ((1 - x)*(1 - 3*x)).
a(n) = 4*a(n-1) - 3*a(n-2) for n>4.
(End)
a(n) = A289521(n-3) for n > 3. - Andrew Howroyd, Jan 16 2018

Extensions

a(7)-a(30) from Andrew Howroyd, Sep 01 2017

A298123 Number of connected induced subgraphs in the n-Apollonian network.

Original entry on oeis.org

15, 111, 38801, 2445586864035, 1080118354441207408343642986146950633
Offset: 1

Views

Author

Eric W. Weisstein, Jan 13 2018

Keywords

Comments

Term a(6) has 108 decimal digits and a(7) has 323 decimal digits. - Andrew Howroyd, Jan 16 2018

Crossrefs

Cf. A298105.

Programs

  • Mathematica
    {1, 3, 3, 1} . # & /@ NestList[Function[{t0, t1, t2, t3}, {3 t0 + t1^3, t1^2 + t1 t2^2, t1^2 t2 + t2^2 t3, t2^3 + t3^3}] @@ # &, {1, 2, 2, 2}, 4] (* Eric W. Weisstein, Jan 17 2018 *)
  • PARI
    \\ here t0..t3 are for 0..3 outside vertices included in set.
    D(t0,t1,t2,t3)={[3*t0 + t1^3, t1^2 + t1*t2^2, t1^2*t2 + t2^2*t3, t2^3 + t3^3]}
    a(n)={my(v=[1,2,2,2]); for(i=2, n, v=D(v[1], v[2], v[3], v[4])); v[1]+3*v[2]+3*v[3]+v[4]} \\ Andrew Howroyd, Jan 16 2018

Extensions

Terms a(4) and beyond from Andrew Howroyd, Jan 16 2018

A347500 Number of dominating sets in the n-Apollonian network.

Original entry on oeis.org

15, 109, 42953, 2960403451017, 1380531364206778111844580887042461529
Offset: 1

Views

Author

Eric W. Weisstein, Sep 04 2021

Keywords

Comments

Term a(6) has 108 decimal digits and a(7) has 323 decimal digits. - Andrew Howroyd, May 29 2025

Crossrefs

Programs

  • Mathematica
    Map[
      Sum[Binomial[3, k] #[[k + 1]] x^k, {k, 0, 3}] &,
      NestList[Function[{e0, e1, e2, e3}, {e0^3 + e1^3 x, e1^2 e0 + e2^2 e1 x, e2 e1^2 + e3 e2^2 x, e2^3 + e3^3 x}] @@ # &, {x, 1 + x, 1 + x, 1 + x}, 4]
    ] /. x -> 1 (* Eric W. Weisstein, Sep 03 2025 *)
  • PARI
    \\ here e0..e3 are for 0..3 outside vertices included in dominating set.
    step(S,x)={my([e0,e1,e2,e3]=S); [e0^3 + e1^3*x, e1^2*e0 + e2^2*e1*x, e2*e1^2 + e3*e2^2*x, e2^3 + e3^3*x]}
    a(n,x=1)={my(S=[x,1+x,1+x,1+x]); for(i=2, n, S=step(S,x)); sum(k=0, 3, binomial(3,k) * S[1+k] * x^k)} \\ Andrew Howroyd, May 29 2025

Extensions

a(4) onwards from Andrew Howroyd, May 29 2025
Showing 1-3 of 3 results.