Original entry on oeis.org
1, 2, 38, 1245, 55566, 3062271, 197983540, 14567100211, 1196032764639, 108105913233804, 10651377348228706, 1135394214204504346, 130161542660895451934, 15969338705916554563833, 2088140238440781625249392, 289961586742613652475061397, 42623636996226195002733858964, 6613842247421357561153219091827, 1080515428870235624428208631160409, 185421585676394321869412169323524031
Offset: 1
-
/* As central terms of triangle A291820 */
{A291820(n, k) = my(A=x); for(i=1, n, A = x + subst(x*A, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A, n, x), k, y)}
for(n=1, 20, print1(A291820(2*n-1, n-1), ", "));
Original entry on oeis.org
1, 7, 38, 189, 904, 4242, 19723, 91366, 423124, 1963169, 9138416, 42718416, 200656644, 947423923, 4497458118, 21465533955, 103001236168, 496832195860, 2408570061810, 11732479621260, 57410235742920, 282124153996425, 1391949415580256, 6893204658852960, 34254642268407820, 170769192927927532, 853864581906454264, 4281167768111675732, 21519922572920909984
Offset: 1
-
/* As a diagonal of triangle A291820 */
{A291820(n, k) = my(A=x); for(i=1, n, A = x + subst(x*A, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A, n, x), k, y)}
for(n=1, 20, print1(A291820(n+2, n-1), ", "));
A088714
G.f. satisfies A(x) = 1 + x*A(x)^2*A(x*A(x)).
Original entry on oeis.org
1, 1, 3, 13, 69, 419, 2809, 20353, 157199, 1281993, 10963825, 97828031, 907177801, 8716049417, 86553001779, 886573220093, 9351927111901, 101447092428243, 1130357986741545, 12923637003161409, 151479552582252239
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 69*x^4 + 419*x^5 + 2809*x^6 +...
The g.f. A(x) satisfies:
x*A(x) = x + x^2*A(x) + d/dx x^4*A(x)^2/2! + d^2/dx^2 x^6*A(x)^3/3! + d^3/dx^3 x^8*A(x)^4/4! +...
The logarithm of the g.f. is given by:
log(A(x)) = x*A(x) + d/dx x^3*A(x)^2/2! + d^2/dx^2 x^5*A(x)^3/3! + d^3/dx^3 x^7*A(x)^4/4! + d^4/dx^4 x^9*A(x)^5/5! +...
From _Paul D. Hanna_, Apr 16 2007: (Start)
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*A*B;
B = A + x*B*C;
C = B + x*C*D;
D = C + x*D*E;
E = D + x*E*F ; ...
where variables B,C,D,E,..., are formed from successive iterations of x*A(x):
B = A(x)*A(x*A(x)), C = B*A(x*B), D = C*A(x*C), E = D*A(x*D), ...;
more explicilty,
B = 1 + 2*x + 8*x^2 + 42*x^3 + 258*x^4 + 1764*x^5 + 13070*x^6 +...,
C = 1 + 3*x + 15*x^2 + 93*x^3 + 655*x^4 + 5039*x^5 + 41453*x^6 +...,
D = 1 + 4*x + 24*x^2 + 172*x^3 + 1372*x^4 + 11796*x^5 +...,
E = 1 + 5*x + 35*x^2 + 285*x^3 + 2545*x^4 + 24255*x^5 +...,
... (End)
Related expansions:
A(x*A(x)) = 1 + x + 4*x^2 + 22*x^3 + 142*x^4 + 1016*x^5 + 7838*x^6 + 64174*x^7 + 552112*x^8 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 173*x^4 + 1054*x^5 + 7039*x^6 + 50632*x^7 + 387613*x^8 +...
d/dx x^4*A(x)^2/2! = 2*x^3 + 5*x^4 + 21*x^5 + 112*x^6 + 692*x^7 + 4743*x^8 +...
d^2/dx^2 x^6*A(x)^3/3! = 5*x^4 + 21*x^5 + 112*x^6 + 696*x^7 + 4815*x^8 +...
d^3/dx^3 x^8*A(x)^4/4! = 14*x^5 + 84*x^6 + 540*x^7 + 3795*x^8 +...
d^4/dx^4 x^10*A(x)^5/5! = 42*x^6 + 330*x^7 + 2475*x^8 + 19305*x^9 +...
...
d^(n-1)/dx^(n-1) x^(2*n)*A(x)^n/n! = A000108(n)*x^(n+1) +...
-
m = 21; A[] = 1; Do[A[x] = 1 + x A[x]^2 A[x A[x]] + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n) = my(A); if( n<0, 0, n++; A = x + O(x^2); for(i=2, n, A = x / (1 - subst(A, x, A))); polcoeff(A, n))}; /* Michael Somos, May 21 2005 */
-
{a(n)=local(A); if(n<0, 0, A=1+x+O(x^2); for(i=1,n, A=1/(1-x*A*subst(A,x,x*A)));polcoeff(A,n))}
-
{a(n)=local(A); if(n<0, 0, A=1+x+O(x^2);for(i=0,n, A=(1/x)*serreverse(x-x^2*A));polcoeff(A,n))}
-
{a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n+k+m,k)/(n+k+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
-
/* n-th Derivative: */
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
/* G.f.: [Paul D. Hanna, Dec 18 2010] */
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n,A=exp(sum(m=1, n, Dx(m-1, x^(2*m-1)*A^m/m!))+x*O(x^n))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* n-th Derivative: */
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
/* G.f.: [Paul D. Hanna, May 31 2012] */
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n,A=1+(1/x)*sum(m=1, n+1, Dx(m-1, x^(2*m)*A^m/m!))+x*O(x^n)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A291813
G.f. A(x) satisfies: A(x - 2*x*A(x)) = x - x*A(x).
Original entry on oeis.org
1, 1, 5, 35, 297, 2873, 30657, 353727, 4355497, 56709337, 775575269, 11085971235, 164979882033, 2548461481105, 40762085472929, 673751263927071, 11489101983573105, 201838769635965969, 3648620371959258149, 67795012307507004291, 1293607920940368319641, 25326486746707799668105, 508368313083167614599201, 10454499119633293760277151, 220120546753823908307191769, 4742197866143368618862457641
Offset: 1
G.f.: A(x) = x + x^2 + 5*x^3 + 35*x^4 + 297*x^5 + 2873*x^6 + 30657*x^7 + 353727*x^8 + 4355497*x^9 + 56709337*x^10 + 775575269*x^11 + 11085971235*x^12 +...
such that A(x - 2*x*A(x)) = x - x*A(x).
RELATED SERIES.
A(x - 2*x*A(x)) = x - x^2 - x^3 - 5*x^4 - 35*x^5 - 297*x^6 - 2873*x^7 - 30657*x^8 +...
which equals x - x*A(x).
Series_Reversion( x - 2*x*A(x) ) = x + 2*x^2 + 10*x^3 + 70*x^4 + 594*x^5 + 5746*x^6 + 61314*x^7 + 707454*x^8 + 8710994*x^9 + 113418674*x^10 +...
which equals 2*A(x) - x.
A( 2*A(x) - x ) = x + 3*x^2 + 19*x^3 + 159*x^4 + 1561*x^5 + 17087*x^6 + 202975*x^7 + 2574391*x^8 + 34495545*x^9 + 484770627*x^10 + 7107406323*x^11 + 108289787415*x^12 + 1709478736593*x^13 + 27894511442079*x^14 +...
which equals (A(x) - x) / (2*A(x) - x).
-
{a(n) = my(A=x); for(i=1, n, A = (1/2)*serreverse( x - 2*x*A +x*O(x^n) ) + x/2 ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A291814
G.f. A(x) satisfies: A(x - 3*x*A(x)) = x - 2*x*A(x).
Original entry on oeis.org
1, 1, 7, 67, 769, 10009, 143359, 2218255, 36625657, 639659737, 11741022235, 225390779647, 4508109360985, 93665093491381, 2016669357747667, 44905700922069463, 1032419000661778213, 24472819932819733957, 597384952530618840715, 15000294032677574361955, 387082666821619977435277, 10256260095368150955828565, 278811213889895147327704519, 7770474960716476086765483619
Offset: 1
G.f.: A(x) = x + x^2 + 7*x^3 + 67*x^4 + 769*x^5 + 10009*x^6 + 143359*x^7 + 2218255*x^8 + 36625657*x^9 + 639659737*x^10 + 11741022235*x^11 + 225390779647*x^12 +...
such that A(x - 3*x*A(x)) = x - 2*x*A(x).
RELATED SERIES.
A(x - 3*x*A(x)) = x - 2*x^2 - 2*x^3 - 14*x^4 - 134*x^5 - 1538*x^6 - 20018*x^7 +...
which equals x - 2*x*A(x).
Series_Reversion( x - 3*x*A(x) ) = x + 3*x^2 + 21*x^3 + 201*x^4 + 2307*x^5 + 30027*x^6 + 430077*x^7 + 6654765*x^8 +...
which equals 3*A(x) - 2*x.
A( 3*A(x) - 2*x ) = x + 4*x^2 + 34*x^3 + 382*x^4 + 5038*x^5 + 74134*x^6 + 1184650*x^7 + 20224990*x^8 + 364994554*x^9 + 6911857450*x^10 + 136622440786*x^11 + 2807805653098*x^12 +...
which equals (A(x) - x) / (3*A(x) - 2*x).
-
{a(n) = my(A=x); for(i=1, n, A = (1/3)*serreverse( x - 3*x*A +x*O(x^n) ) + 2*x/3 ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A291815
G.f. A(x) satisfies: A(x - 4*x*A(x)) = x - 3*x*A(x).
Original entry on oeis.org
1, 1, 9, 109, 1569, 25481, 454105, 8730373, 178996865, 3881556561, 88477557289, 2109927671453, 52443846331297, 1354646602217945, 36275862587452281, 1005099719255707829, 28765965099599741953, 849204340574458575777, 25827102287376124267593, 808349897942417046805197, 26011340193853765710238241, 859773626049480606121078057, 29168437337569276216572259097
Offset: 1
G.f.: A(x) = x + x^2 + 9*x^3 + 109*x^4 + 1569*x^5 + 25481*x^6 + 454105*x^7 + 8730373*x^8 + 178996865*x^9 + 3881556561*x^10 + 88477557289*x^11 + 2109927671453*x^12 +...
such that A(x - 4*x*A(x)) = x - 3*x*A(x).
RELATED SERIES.
A(x - 4*x*A(x)) = x - 3*x^2 - 3*x^3 - 27*x^4 - 327*x^5 - 4707*x^6 - 76443*x^7 +...
which equals x - 3*x*A(x).
Series_Reversion( x - 4*x*A(x) ) = x + 4*x^2 + 36*x^3 + 436*x^4 + 6276*x^5 + 101924*x^6 + 1816420*x^7 + 34921492*x^8 +...
which equals 4*A(x) - 3*x.
A( 4*A(x) - 3*x ) = x + 5*x^2 + 53*x^3 + 741*x^4 + 12153*x^5 + 222405*x^6 + 4421501*x^7 + 93949493*x^8 + 2110952881*x^9 + 49786323589*x^10 + 1225967873349*x^11 + 31395927333829*x^12 +...
which equals (A(x) - x) / (4*A(x) - 3*x).
-
{a(n) = my(A=x); for(i=1, n, A = (1/4)*serreverse( x - 4*x*A +x*O(x^n) ) + 3*x/4 ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A291816
G.f. A(x) satisfies: A(x - 3*x*A(x)) = x - x*A(x).
Original entry on oeis.org
1, 2, 16, 182, 2524, 39992, 699520, 13231034, 266985280, 5694001172, 127481465536, 2981125793144, 72532301230672, 1830526849868000, 47802726801684544, 1289123410465365782, 35841130838977837348, 1025903099063974343984, 30195807234087904770952, 912951678159786641659796, 28327442752528049524839856, 901289532361030971832330544, 29382621186595702051011638128
Offset: 1
G.f.: A(x) = x + 2*x^2 + 16*x^3 + 182*x^4 + 2524*x^5 + 39992*x^6 + 699520*x^7 + 13231034*x^8 + 266985280*x^9 + 5694001172*x^10 +...
such that A(x - 3*x*A(x)) = x - x*A(x).
RELATED SERIES.
A(x - 3*x*A(x)) = x - x^2 - 2*x^3 - 16*x^4 - 182*x^5 - 2524*x^6 - 39992*x^7 - 699520*x^8 +...
which equals x - x*A(x).
Series_Reversion( x - 3*x*A(x) ) = x + 3*x^2 + 24*x^3 + 273*x^4 + 3786*x^5 + 59988*x^6 + 1049280*x^7 + 19846551*x^8 +...
which equals (3/2)*A(x) - x/2.
A( (3*A(x) - x)/2 ) = x + 5*x^2 + 52*x^3 + 713*x^4 + 11458*x^5 + 205160*x^6 + 3984304*x^7 + 82576109*x^8 + 1807215616*x^9 + 41461917398*x^10 +...
which equals (A(x) - x) / (3*A(x) - x).
-
{a(n) = my(A=x); for(i=1, n, A = (2/3)*serreverse( x - 3*x*A +x*O(x^n) ) + x/3 ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A291817
G.f. A(x) satisfies: A(x - 3*x*A(x)) = x + x*A(x).
Original entry on oeis.org
1, 4, 40, 580, 10312, 209752, 4707952, 114128308, 2946787192, 80268150808, 2290811949904, 68149759850680, 2105074730357968, 67308231895605520, 2222306773263886624, 75615701295449074084, 2647156154616207962920, 95215874465318554556776, 3514739264129342710455184, 133012394550946993742673304, 5156112210399927390763631056, 204570581814658024128260509360
Offset: 1
G.f.: A(x) = x + 4*x^2 + 40*x^3 + 580*x^4 + 10312*x^5 + 209752*x^6 + 4707952*x^7 + 114128308*x^8 + 2946787192*x^9 + 80268150808*x^10 +...
such that A(x - 3*x*A(x)) = x + x*A(x).
RELATED SERIES.
A(x - 3*x*A(x)) = x + x^2 + 4*x^3 + 40*x^4 + 580*x^5 + 10312*x^6 + 209752*x^7 + 4707952*x^8 +...
which equals x + x*A(x).
Series_Reversion( x - 3*x*A(x) ) = x + 3*x^2 + 30*x^3 + 435*x^4 + 7734*x^5 + 157314*x^6 + 3530964*x^7 + 85596231*x^8 +...
which equals (3/4)*A(x) + x/4.
A( (3*A(x) + x)/4 ) = x + 7*x^2 + 94*x^3 + 1651*x^4 + 33886*x^5 + 773458*x^6 + 19117780*x^7 + 503529979*x^8 + 13983485770*x^9 + 406470316978*x^10 +...
which equals (A(x) - x) / (3*A(x) + x).
-
{a(n) = my(A=x); for(i=1, n, A = (4/3)*serreverse( x - 3*x*A +x*O(x^n) ) - x/3 ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A291818
G.f. A(x) satisfies: A(x - 4*x*A(x)) = x - x*A(x).
Original entry on oeis.org
1, 3, 33, 519, 9969, 218907, 5307201, 139123215, 3889995297, 114928234611, 3563543673825, 115375173490839, 3885328265571345, 135675583665864843, 4900856792035006593, 182756242210436579871, 7023982500750575903553, 277842871320960134512611, 11297961688442941015761825, 471773677417286920645721895, 20211597594930636918024401457, 887652829316087359743197592315
Offset: 1
G.f.: A(x) = x + 3*x^2 + 33*x^3 + 519*x^4 + 9969*x^5 + 218907*x^6 + 5307201*x^7 + 139123215*x^8 + 3889995297*x^9 + 114928234611*x^10 +...
such that A(x - 4*x*A(x)) = x - x*A(x).
RELATED SERIES.
A(x - 4*x*A(x)) = x - x^2 - 3*x^3 - 33*x^4 - 519*x^5 - 9969*x^6 - 218907*x^7 - 5307201*x^8 +...
which equals x - x*A(x).
Series_Reversion( x - 4*x*A(x) ) = x + 4*x^2 + 44*x^3 + 692*x^4 + 13292*x^5 + 291876*x^6 + 7076268*x^7 + 185497620*x^8 +...
which equals (4/3)*A(x) - x/3.
A( (4*A(x) - x)/3 ) = x + 7*x^2 + 101*x^3 + 1919*x^4 + 42713*x^5 + 1058967*x^6 + 28469325*x^7 + 816617535*x^8 + 24729787889*x^9 + 784895219495*x^10 +...
which equals (A(x) - x) / (4*A(x) - x).
-
{a(n) = my(A=x); for(i=1, n, A = (3/4)*serreverse( x - 4*x*A +x*O(x^n) ) + x/4 ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A291819
G.f. A(x) satisfies: A(x - x*A(x)) = x + 3*x*A(x).
Original entry on oeis.org
1, 4, 24, 196, 1944, 21944, 272080, 3627412, 51288200, 761782104, 11805102064, 189901153112, 3158767322992, 54165347282960, 955189096759776, 17289056525343716, 320678326091307448, 6087009196570756488, 118109764108446889008, 2340448760238788518488, 47324471620802426563376, 975739573623235107473968, 20500725692629852174532192, 438679922664144046444438488, 9555430871381022848971028208
Offset: 1
G.f.: A(x) = x + 4*x^2 + 24*x^3 + 196*x^4 + 1944*x^5 + 21944*x^6 + 272080*x^7 + 3627412*x^8 + 51288200*x^9 + 761782104*x^10 +...
such that A(x - x*A(x)) = x + 3*x*A(x).
RELATED SERIES.
A(x - x*A(x)) = x + 3*x^2 + 12*x^3 + 72*x^4 + 588*x^5 + 5832*x^6 + 65832*x^7 + 816240*x^8 +...
which equals x + 3*x*A(x).
Series_Reversion( x - x*A(x) ) = x + x^2 + 6*x^3 + 49*x^4 + 486*x^5 + 5486*x^6 + 68020*x^7 + 906853*x^8 +...
which equals (1/4)*A(x) + 3*x/4.
A( (A(x) + 3*x)/4 ) = x + 5*x^2 + 38*x^3 + 369*x^4 + 4158*x^5 + 51870*x^6 + 698036*x^7 + 9974297*x^8 + 149755186*x^9 + 2345335606*x^10 +...
which equals (A(x) - x) / (A(x) + 3*x).
-
{a(n) = my(A=x); for(i=1, n, A = 4*serreverse( x - x*A +x*O(x^n) ) - 3*x ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
Showing 1-10 of 10 results.
Comments