A291823 Number of ordered rooted trees with n non-root nodes and all outdegrees <= eight.
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16785, 58708, 207557, 740520, 2662812, 9640581, 35112513, 128563215, 472951884, 1747233370, 6479450415, 24111470952, 90006390290, 336953657070, 1264770431964, 4758911027946, 17946417454046, 67818937355227, 256781370248500
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- N. Hein and J. Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015
- Index entries for sequences related to rooted trees
Programs
-
Maple
b:= proc(u, o) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1), j=1..min(1, u))+ add(b(u+j-1, o-j), j=1..min(8, o))) end: a:= n-> b(0, n): seq(a(n), n=0..30);
-
Mathematica
b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]]; a[n_] := b[0, n, 8]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
-
PARI
Vec(serreverse(x*(1-x)/(1-x*x^8) + O(x*x^25))) \\ Andrew Howroyd, Nov 29 2017
Formula
G.f.: G(x)/x where G(x) is the reversion of x*(1-x)/(1-x^9). - Andrew Howroyd, Nov 30 2017
G.f. A(x) satisfies: A(x) = 1 + Sum_{k=1..8} x^k*A(x)^k. - Ilya Gutkovskiy, May 03 2019
Comments