cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291843 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 0, 1, 5, 3, 36, 33, 2, 329, 388, 72, 3655, 5101, 1545, 64, 47844, 75444, 30700, 3023, 20, 721315, 1248911, 621937, 97200, 3134, 12310199, 22964112, 13269140, 2793713, 180936, 1656, 234615096, 465344235, 301698501, 78495574, 7733807, 205620, 352, 4939227215, 10316541393, 7336995966, 2239771686, 293933437, 13977294, 140660
Offset: 0

Views

Author

Gheorghe Coserea, Oct 23 2017

Keywords

Comments

Row n > 0 contains floor((2*n+1)/3) terms.

Examples

			A(x;t) = 1 + x^2 + (5 + 3*t)*x^3 + (36 + 33*t + 2*t^2)*x^4 + ...
Triangle starts:
n\k  [0]        [1]        [2]        [3]       [4]      [5]     [6]
[0]  1;
[1]  0;
[2]  1;
[3]  5,         3;
[4]  36,        33,        2;
[5]  329,       388,       72;
[6]  3655,      5101,      1545,      64;
[7]  47844,     75444,     30700,     3023,     20;
[8]  721315,    1248911,   621937,    97200,    3134;
[9]  12310199,  22964112,  13269140,  2793713,  180936,  1656;
[10] 234615096, 465344235, 301698501, 78495574, 7733807, 205620, 352;
[11] ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 11; Clear[Z, Zp]; Z[_] = 0;
    Do[
    Zp[t_] = Z'[t] + O[t]^n // Normal;
    Z[t_] = (-(1/(2L t (1+t)))) (-1 + t - 2L t + 2L^2 t^4 (1 + Zp[t]) + t^2 (1 + 2L + 2L Zp[t]) + L t^3 (3 + 2L + 2(1+L) Zp[t]) + Sqrt[4L t (1+t) (1 + L t)(-1 + t + 2L t^2 + 2(-1 + L) t^2 Zp[t]) + (-1 + t (1 + t + L (-2 + t (2 + t (3 + 2L (1+t))))) + 2L t^2 (1+t)(1 + L t) Zp[t])^2]) + O[t]^n // Normal // Simplify,
    {n, nmax+1}];
    CoefficientList[#, L]& /@ CoefficientList[Z[t], t] /. {} -> {0} // Flatten (* Jean-François Alcover, Oct 23 2018 *)
  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1;); y;
    };
    concat(apply(p->if(p === Pol(0,'t), [0], Vecrev(p)), Vec(A291843_ser(12))))
    \\ test: y=A291843_ser(56); 2*x^2*deriv(y,x) == (1-x-2*t*x^2)*((1+x)*y-1)/(1-t + t*(1+x)*y) - y*x/(1+t*x)

Formula

y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies 2*x^2*deriv(y,x) = (1-x-2*t*x^2)*((1+x)*y-1)/(1-t + t*(1+x)*y) - y*x/(1+t*x), with y(0;t)=1, where P_n(t) = Sum_{k=0..floor((2*n-2)/3)} T(n,k)*t^k for n > 0. (see eqn. (24) in Molinari link)
A278990(n) = P_n(0), A294166(n) = P_n(1), A082582(n) = P_n(-1) for n > 1.
A267827(n) = T(3*n+1, 2*n), n > 0. - Danny Rorabaugh, Nov 10 2017