A291843 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
1, 0, 1, 5, 3, 36, 33, 2, 329, 388, 72, 3655, 5101, 1545, 64, 47844, 75444, 30700, 3023, 20, 721315, 1248911, 621937, 97200, 3134, 12310199, 22964112, 13269140, 2793713, 180936, 1656, 234615096, 465344235, 301698501, 78495574, 7733807, 205620, 352, 4939227215, 10316541393, 7336995966, 2239771686, 293933437, 13977294, 140660
Offset: 0
Examples
A(x;t) = 1 + x^2 + (5 + 3*t)*x^3 + (36 + 33*t + 2*t^2)*x^4 + ... Triangle starts: n\k [0] [1] [2] [3] [4] [5] [6] [0] 1; [1] 0; [2] 1; [3] 5, 3; [4] 36, 33, 2; [5] 329, 388, 72; [6] 3655, 5101, 1545, 64; [7] 47844, 75444, 30700, 3023, 20; [8] 721315, 1248911, 621937, 97200, 3134; [9] 12310199, 22964112, 13269140, 2793713, 180936, 1656; [10] 234615096, 465344235, 301698501, 78495574, 7733807, 205620, 352; [11] ...
Links
- Gheorghe Coserea, Rows n = 0..123, flattened
- Luca G. Molinari, Nicola Manini, Enumeration of many-body skeleton diagrams, arXiv:cond-mat/0512342 [cond-mat.str-el], 2006.
Programs
-
Mathematica
nmax = 11; Clear[Z, Zp]; Z[_] = 0; Do[ Zp[t_] = Z'[t] + O[t]^n // Normal; Z[t_] = (-(1/(2L t (1+t)))) (-1 + t - 2L t + 2L^2 t^4 (1 + Zp[t]) + t^2 (1 + 2L + 2L Zp[t]) + L t^3 (3 + 2L + 2(1+L) Zp[t]) + Sqrt[4L t (1+t) (1 + L t)(-1 + t + 2L t^2 + 2(-1 + L) t^2 Zp[t]) + (-1 + t (1 + t + L (-2 + t (2 + t (3 + 2L (1+t))))) + 2L t^2 (1+t)(1 + L t) Zp[t])^2]) + O[t]^n // Normal // Simplify, {n, nmax+1}]; CoefficientList[#, L]& /@ CoefficientList[Z[t], t] /. {} -> {0} // Flatten (* Jean-François Alcover, Oct 23 2018 *)
-
PARI
A291843_ser(N, t='t) = { my(x='x+O('x^N), y=1, y1=0, n=1, dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1)); while (n++, y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) + (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn; if (y1 == y, break); y = y1;); y; }; concat(apply(p->if(p === Pol(0,'t), [0], Vecrev(p)), Vec(A291843_ser(12)))) \\ test: y=A291843_ser(56); 2*x^2*deriv(y,x) == (1-x-2*t*x^2)*((1+x)*y-1)/(1-t + t*(1+x)*y) - y*x/(1+t*x)
Formula
y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies 2*x^2*deriv(y,x) = (1-x-2*t*x^2)*((1+x)*y-1)/(1-t + t*(1+x)*y) - y*x/(1+t*x), with y(0;t)=1, where P_n(t) = Sum_{k=0..floor((2*n-2)/3)} T(n,k)*t^k for n > 0. (see eqn. (24) in Molinari link)
A267827(n) = T(3*n+1, 2*n), n > 0. - Danny Rorabaugh, Nov 10 2017
Comments