A291896 Number of 1-dimensional sandpiles with n grains piling up against the wall.
1, 1, 1, 2, 3, 5, 9, 14, 24, 40, 67, 112, 186, 312, 520, 868, 1449, 2417, 4034, 6730, 11229, 18735, 31254, 52143, 86989, 145119, 242096, 403871, 673751, 1123964, 1875014, 3127926, 5218034, 8704769, 14521354, 24224601, 40411595, 67414781, 112461579, 187608762
Offset: 0
Keywords
Examples
The a(6)=9 smooth compositions of 6 are: : : oooooo| : : o| : ooooo| : : o | : ooooo| : : o | : ooooo| : : o | : ooooo| : : oo| : oooo| : : o o| : oooo| : : oo | : oooo| : : o| : oo| : ooo|
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..4501
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, j), j=max(1, i-1)..min(i+1, n))) end: a:= n-> b(n, 0): seq(a(n), n=0..50); # Alois P. Heinz, Sep 05 2017
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, j], {j, Max[1, i-1], Min[i+1, n]}]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, May 29 2019, after Alois P. Heinz *)
-
Python
from sympy.core.cache import cacheit @cacheit def b(n, i): return 1 if n==0 else sum(b(n - j, j) for j in range(max(1, i - 1), min(i + 1, n) + 1)) def a(n): return b(n, 0) print([a(n) for n in range(51)]) # Indranil Ghosh, Sep 06 2017, after Maple code
Comments