A291897 Numerator of E(2*n-1,n), where E(n,x) is the Euler polynomial.
1, 9, 125, 32977, 971919, 358472059, 47622059953, 137818710619425, 8141400285401267, 9740358918723188381, 3597069206174040366021, 12859671622917809034800123, 3419734700063005545155284375, 8538628250545609672426471056711, 6181704419438256867205044161777369
Offset: 1
References
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 1972, Ch. 23.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..215
- Vladimir Shevelev, On a Luschny question, arXiv:1708.08096 [math.NT], 2017.
Programs
-
Maple
A291897 := n -> euler(2*n-1, n)*2^(padic[ordp](2*n, 2)): seq(A291897(n), n=1..15); # Peter Luschny, Sep 22 2017
-
Mathematica
f[n_] := Numerator@ EulerE[2 n - 1, n]; Array[f, 15] (* Robert G. Wilson v, Sep 22 2017 *) Table[2^IntegerExponent[2n, 2] EulerE[2 n-1, n], {n,1,15}] (* Peter Luschny, Sep 22 2017 *)
-
PARI
a(n) = numerator(subst(eulerpol(2*n-1, 'x), 'x, n)); \\ Michel Marcus, Sep 21 2021
-
Python
from sympy import euler def A291897(n): return euler((n<<1)-1,n).p # Chai Wah Wu, Jul 07 2022
Formula
Extensions
More terms from Peter J. C. Moses, Sep 22 2017
Comments