A291901 Numbers n such that the sum of sums of elements of subsets of divisors of n is a perfect number (A000396).
2, 4, 13, 16, 64, 4096, 65536, 262144, 3145341, 932181397, 1073741824, 1152921504606846976, 309485009821345068724781056, 81129638414606681695789005144064, 85070591730234615865843651857942052864, 75603657215035519123837860069507929970384679
Offset: 1
Keywords
Examples
Divisors of 4: {1, 2, 4}; nonempty subsets of divisors of n: {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}; sum of sums of elements of subsets = 1 + 2 + 4 + 3 + 5 + 6 + 7 = 28 (perfect number). sigma(16) * 2^(tau(16) - 1) = 31 * 16 = 496 (perfect number).
Links
- Max Alekseyev, Table of n, a(n) for n = 1..71
Programs
-
Magma
[n: n in [1..10^6] | SumOfDivisors(SumOfDivisors(n)* (2^(NumberOfDivisors(n)-1))) eq 2*(SumOfDivisors(n)* (2^(NumberOfDivisors(n)-1)))];
-
Maple
isA000396 := proc(n) numtheory[sigma](n)=2*n ; simplify(%) ; end proc: for n from 1 do if isA000396(A229335(n)) then print(n); end if; end do: # R. J. Mathar, Nov 10 2017
-
Mathematica
Select[Range[2^20], DivisorSigma[1, DivisorSigma[1, #] 2^(DivisorSigma[0, #] - 1)] == 2 (DivisorSigma[1, #] 2^(DivisorSigma[0, #] - 1)) &] (* Michael De Vlieger, Nov 02 2017 *)
Extensions
Terms a(10) onward added by Max Alekseyev, Sep 18 2024
Comments