cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A111635 Smallest prime of the form x^(2^n) + y^(2^n) where x,y are distinct integers.

Original entry on oeis.org

2, 5, 17, 257, 65537, 3512911982806776822251393039617, 4457915690803004131256192897205630962697827851093882159977969339137, 1638935311392320153195136107636665419978585455388636669548298482694235538906271958706896595665141002450684974003603106305516970574177405212679151205373697500164072550932748470956551681
Offset: 0

Views

Author

Max Alekseyev, Aug 09 2005

Keywords

Comments

Is this sequence defined for all n?
From Jeppe Stig Nielsen, Sep 16 2015: (Start)
Numbers of this form are sometimes called extended generalized Fermat numbers.
If we restrict ourselves to the case y=1, we get instead the sequence A123599, therefore a(n) <= A123599(n) for all n. Can this be an equality for some n > 4?
The formula x^(2^m) + y^(2^m) also gives the decreasing chain {A000040, A002313, A002645, A006686, A100266, A100267, ...} of subsets of the prime numbers if we drop the requirement that x != y and take all primes (not just the smallest one) with m greater than some lower bound.
(End)
For more terms (the values of max(x,y)), see A291944. - Jeppe Stig Nielsen, Dec 28 2019

Crossrefs

A301738 a(n) is the least A for which there exists B with 0 < B < A so that (A^(2^n) + B^(2^n))/2 is prime.

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 3, 49, 7, 35, 67, 75, 157, 107, 71, 137, 275, 531
Offset: 0

Views

Author

Jeppe Stig Nielsen, Mar 26 2018

Keywords

Comments

Both A and B will be odd, with gcd(A, B) = 1. B values can be seen in link section.
If we require B=1, we get A275530. Therefore a(n) <= A275530(n).

Examples

			a(10)=67 corresponds to the prime number (67^1024 + 57^1024)/2, the smallest prime number of the form (A^1024 + B^1024)/2 (or more precisely, it minimizes A).
		

Crossrefs

Programs

  • Mathematica
    Table[a=1; While[Or@@PrimeQ[Table[(a^(2^n)+b^(2^n))/2,{b,a++}]]==False];a,{n,0,9}] (* Giorgos Kalogeropoulos, Mar 31 2021 *)
  • PARI
    for(n=0, 30, forstep(a=3, +oo, 2, forstep(b=1, a-2, 2, if(ispseudoprime((a^(2^n)+b^(2^n))/2), print1(a, ", "); next(3)))))
    
  • Python
    from sympy import isprime
    def a(n):
      A, p, Ap = 3, 2**n, 3**(2**n)
      while True:
        if any(isprime((Ap + B**p)//2) for B in range(1, A, 2)): return A
        A += 2; Ap = A**p
    print([a(n) for n in range(10)]) # Michael S. Branicky, Mar 03 2021

Extensions

a(16)=275 with B=53, calculated by Kellen Shenton, added by Jeppe Stig Nielsen, Nov 10 2020
a(17)=531 with B=25, by Kellen Shenton, added by Jeppe Stig Nielsen, Mar 30 2021

A302387 a(n) is least number k >= 3 such that (k^(2^n) + (k-2)^(2^n))/2 is prime.

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 3, 179, 169, 935, 663, 8723, 1481, 2035, 10199, 18203, 36395
Offset: 0

Views

Author

Jeppe Stig Nielsen, Apr 06 2018

Keywords

Examples

			a(10)=663 corresponds to the prime (663^1024 + 661^1024)/2.
		

Crossrefs

Programs

  • Mathematica
    lst = {};  For[n=0, n<=14, n++, k=3;  While[! PrimeQ[(k^(2^n) + (k-2)^(2^n))/2], k++];  AppendTo[lst, k]];  lst (* Robert Price, Apr 29 2018 *)
  • PARI
    for(n=0,20,forstep(k=3,+oo,2,if(ispseudoprime((k^(2^n)+(k-2)^(2^n))/2),print1(k,", ");break())))

Extensions

a(15) from Robert Price, May 28 2018
a(16) from Kellen Shenton, Apr 14 2022

A343121 a(n) is the least A for which there exists B with 0 < B < A so that A^(2^k) + B^(2^k) is prime for k = 0, 1, ..., n.

Original entry on oeis.org

2, 2, 2, 2, 2, 2669, 34559, 26507494, 3242781025
Offset: 0

Views

Author

Jeppe Stig Nielsen, Apr 05 2021

Keywords

Comments

For n < 5, the corresponding primes are Fermat primes, for higher n so-called generalized Fermat primes.

Examples

			For n=5, the six numbers 2669 + 720, 2669^2 + 720^2, 2669^4 + 720^4, 2669^8 + 720^8, 2669^16 + 720^16, and 2669^32 + 720^32 are all prime, and (A,B) = (2669,720) is the least pair with this property, so a(5)=2669.
For n=6, (A,B) = (34559,29000).
For n=7, (A,B) = (26507494,6329559).
For n=8, (A,B) = (3242781025,1554825312).
		

Crossrefs

Programs

  • PARI
    a(n)=for(A=1, oo, for(B=1, A-1, for(k=0, n, !ispseudoprime(A^(2^k)+B^(2^k)) && next(2)); return(A)))

Extensions

a(7) from Kellen Shenton, May 28 2022
a(8) from Kellen Shenton, Aug 27 2022
Showing 1-4 of 4 results.