A111635
Smallest prime of the form x^(2^n) + y^(2^n) where x,y are distinct integers.
Original entry on oeis.org
2, 5, 17, 257, 65537, 3512911982806776822251393039617, 4457915690803004131256192897205630962697827851093882159977969339137, 1638935311392320153195136107636665419978585455388636669548298482694235538906271958706896595665141002450684974003603106305516970574177405212679151205373697500164072550932748470956551681
Offset: 0
A301738
a(n) is the least A for which there exists B with 0 < B < A so that (A^(2^n) + B^(2^n))/2 is prime.
Original entry on oeis.org
3, 3, 3, 5, 3, 3, 3, 49, 7, 35, 67, 75, 157, 107, 71, 137, 275, 531
Offset: 0
a(10)=67 corresponds to the prime number (67^1024 + 57^1024)/2, the smallest prime number of the form (A^1024 + B^1024)/2 (or more precisely, it minimizes A).
-
Table[a=1; While[Or@@PrimeQ[Table[(a^(2^n)+b^(2^n))/2,{b,a++}]]==False];a,{n,0,9}] (* Giorgos Kalogeropoulos, Mar 31 2021 *)
-
for(n=0, 30, forstep(a=3, +oo, 2, forstep(b=1, a-2, 2, if(ispseudoprime((a^(2^n)+b^(2^n))/2), print1(a, ", "); next(3)))))
-
from sympy import isprime
def a(n):
A, p, Ap = 3, 2**n, 3**(2**n)
while True:
if any(isprime((Ap + B**p)//2) for B in range(1, A, 2)): return A
A += 2; Ap = A**p
print([a(n) for n in range(10)]) # Michael S. Branicky, Mar 03 2021
A302387
a(n) is least number k >= 3 such that (k^(2^n) + (k-2)^(2^n))/2 is prime.
Original entry on oeis.org
3, 3, 3, 5, 3, 3, 3, 179, 169, 935, 663, 8723, 1481, 2035, 10199, 18203, 36395
Offset: 0
a(10)=663 corresponds to the prime (663^1024 + 661^1024)/2.
-
lst = {}; For[n=0, n<=14, n++, k=3; While[! PrimeQ[(k^(2^n) + (k-2)^(2^n))/2], k++]; AppendTo[lst, k]]; lst (* Robert Price, Apr 29 2018 *)
-
for(n=0,20,forstep(k=3,+oo,2,if(ispseudoprime((k^(2^n)+(k-2)^(2^n))/2),print1(k,", ");break())))
A343121
a(n) is the least A for which there exists B with 0 < B < A so that A^(2^k) + B^(2^k) is prime for k = 0, 1, ..., n.
Original entry on oeis.org
2, 2, 2, 2, 2, 2669, 34559, 26507494, 3242781025
Offset: 0
For n=5, the six numbers 2669 + 720, 2669^2 + 720^2, 2669^4 + 720^4, 2669^8 + 720^8, 2669^16 + 720^16, and 2669^32 + 720^32 are all prime, and (A,B) = (2669,720) is the least pair with this property, so a(5)=2669.
For n=6, (A,B) = (34559,29000).
For n=7, (A,B) = (26507494,6329559).
For n=8, (A,B) = (3242781025,1554825312).
- Yves Gallot, xgfp8, software for calculating this sequence.
-
a(n)=for(A=1, oo, for(B=1, A-1, for(k=0, n, !ispseudoprime(A^(2^k)+B^(2^k)) && next(2)); return(A)))
Showing 1-4 of 4 results.
Comments