cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A291981 a(n) = n! * [x^n] exp(x)/(1 - log(1+x)).

Original entry on oeis.org

1, 2, 4, 9, 23, 70, 244, 1015, 4605, 25090, 137516, 963589, 5832243, 54685670, 310755964, 4567695283, 15162041017, 581160322338, -1133608829900, 115627157052929, -1056546484541681, 34518230044201062, -541838359813821916, 14135169210980556655, -288911084512245360587
Offset: 0

Views

Author

Peter Luschny, Sep 16 2017

Keywords

Comments

Row sums of A291980.

Crossrefs

Cf. A291980.

Programs

  • Maple
    a_list := proc(n) exp(x)/(1 - log(1+x)): series(%, x, n+1):
    seq(j!*coeff(%, x, j), j=0..n) end: a_list(24);
  • Mathematica
    nmax = 20; CoefficientList[Series[E^x/(1 - Log[1+x]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 18 2017 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(x)/(1 - log(1+x)))) \\ G. C. Greubel, Aug 30 2018

Formula

a(n) ~ n! * (-1)^(n+1) * exp(-1) / (log(n)^2 * n) * (1 - 2*(1 + gamma)/log(n)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Sep 18 2017
a(n) = 1 + Sum_{k=0..n-1} (-1)^(n-k-1) * binomial(n,k) * (n-k-1)! * a(k). - Ilya Gutkovskiy, Apr 28 2021

A291978 Triangle read by rows, T(n, k) = (-1)^(n-k)*n!*[t^k]([x^n] exp(x*t)/(1 + log(1+x))) for 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 14, 9, 3, 1, 88, 56, 18, 4, 1, 694, 440, 140, 30, 5, 1, 6578, 4164, 1320, 280, 45, 6, 1, 72792, 46046, 14574, 3080, 490, 63, 7, 1, 920904, 582336, 184184, 38864, 6160, 784, 84, 8, 1, 13109088, 8288136, 2620512, 552552, 87444, 11088, 1176, 108, 9, 1
Offset: 0

Views

Author

Peter Luschny, Sep 15 2017

Keywords

Examples

			Triangle starts:
[1]
[1,           1]
[3,           2,      1]
[14,          9,      3,     1]
[88,         56,     18,     4,    1]
[694,       440,    140,    30,    5,   1]
[6578,     4164,   1320,   280,   45,   6,  1]
[72792,   46046,  14574,  3080,  490,  63,  7, 1]
[920904, 582336, 184184, 38864, 6160, 784, 84, 8, 1]
		

Crossrefs

Row sums: A291978.
Columns: A007840 (c=1), A052860 (c=2).
Diagonal: A045943 (d=3).
Cf. A291980.

Programs

  • Maple
    T_row := proc(n) exp(x*t)/(1 + log(1+x)): series(%, x, n+1):
    seq(coeff((-1)^(n-k)*n!*coeff(%,x,n),t,k), k=0..n) end:
    seq(T_row(n), n=0..9);
  • Mathematica
    T[n_, k_] := Binomial[n, n - k]*Sum[j!*Abs[StirlingS1[n - k, j]], {j, 0, n - k}]; Flatten[Table[T[n, k], {n, 0, 9}, {k, 0, n}]] (* Detlef Meya, May 12 2024 *)

Formula

T(n, k) = binomial(n, n - k)*Sum_{j=0..n - k} j!*abs(Stirling1(n - k, j)). - Detlef Meya, May 12 2024
Showing 1-2 of 2 results.