cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292044 Wiener index of the n-halved cube graph.

Original entry on oeis.org

0, 1, 6, 32, 160, 768, 3584, 16384, 73728, 327680, 1441792, 6291456, 27262976, 117440512, 503316480, 2147483648, 9126805504, 38654705664, 163208757248, 687194767360, 2886218022912, 12094627905536, 50577534877696, 211106232532992, 879609302220800, 3659174697238528
Offset: 1

Views

Author

Eric W. Weisstein, Sep 08 2017

Keywords

Comments

a(n) is the sum of the first 2^(n-1) entries of A116640. - Joe Slater, Apr 11 2018

Crossrefs

Cf. A116640.

Programs

  • Mathematica
    Table[If[n == 1, 0, 2^(2 n - 5) n], {n, 40}]
    Join[{0}, LinearRecurrence[{8, -16}, {1, 6}, 20]]
    CoefficientList[Series[((1 - 2 x) x)/(1 - 4 x)^2, {x, 0, 20}], x]
  • PARI
    a(n) = if(n<2, n-1, 2^(2*n-5)*n); \\ Altug Alkan, Apr 12 2018

Formula

a(n) = 2^(2*n-5)*n for n > 1.
a(n) = 8*a(n-1) - 16*a(n-2) for n > 3.
G.f.: ((1 - 2 x) x^2)/(1 - 4 x)^2.
a(n) = 4*a(n-1) + 2^(2*n-5) for n > 2. - Joe Slater, Apr 11 2018
From Amiram Eldar, Apr 16 2022: (Start)
Sum_{n>=2} 1/a(n) = 32*log(4/3) - 8.
Sum_{n>=2} (-1)^n/a(n) = 8 - 32*log(5/4). (End)
From Stefano Spezia, Aug 04 2022: (Start)
E.g.f.: (exp(4*x) - 1)*x/8.
a(n) = (-1)^n*det(M(n-1))/2 for n > 1, where M(n) is the n X n symmetric Toeplitz matrix whose first row consists of 2, 4, ..., 2*n. (End)