cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A292043 G.f.: Im((i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

0, -1, -1, -1, -1, -1, 0, 0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 15, 15, 16, 16, 16, 14, 13, 9, 6, 0, -5, -14, -22, -34, -45, -60, -74, -93, -110, -132, -152, -177, -199, -226, -249, -277, -300, -328, -348, -373, -389, -408, -417, -428, -425, -424, -407, -389, -352
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2017

Keywords

Examples

			Product_{k>=1} (1 - i*x^k) = 1 + (0-1i)*x + (0-1i)*x^2 + (-1-1i)*x^3 + (-1-1i)*x^4 + (-2-1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
		

Crossrefs

Programs

  • Maple
    N:= 100:
    S := convert(series( add( (-1)^(n+1)*x^((n+1)*(2*n+1))/(mul(1 - x^k,k = 1..2*n+1)), n = 0..floor(sqrt(N/2)) ), x, N+1 ), polynom):
    seq(coeff(S, x, n), n = 0..N); # Peter Bala, Feb 05 2021
  • Mathematica
    Im[CoefficientList[Series[QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 08 2017 *)

Formula

(i*x; x)_inf is the g.f. for A292042(n) + i*a(n).
A292042(n)^2 + a(n)^2 = A278420(n). - Vaclav Kotesovec, Sep 08 2017
From Peter Bala, Feb 05 2021: (Start)
G.f.: Sum_{n >= 0} (-1)^(n+1)*x^((n+1)*(2*n+1))/Product_{k = 1..2*n+1} (1 - x^k).
The 2 X 2 matrix Product_{k >= 1} [1, -x^k; x^k, 1] = [A(x), B(x); -B(x), A(x)], where A(x) is the g.f. of A292042 and B(x) is the g.f. for this sequence.
A(x)^2 + B(x)^2 = Product_{k >= 1} 1 + x^(2*k) = A000009(x^2).
A(x) + B(x) is the g.f. of A278399; B(x) - A(x) is the g.f. of A278400. (End)

A292042 G.f.: Re((i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

1, 0, 0, -1, -1, -2, -2, -3, -3, -4, -3, -4, -3, -3, -1, -1, 2, 3, 7, 9, 14, 16, 23, 26, 33, 37, 45, 48, 57, 60, 68, 70, 77, 76, 82, 78, 80, 72, 70, 55, 48, 26, 11, -19, -42, -84, -116, -169, -213, -278, -333, -413, -479, -572, -651, -757, -846, -965, -1062
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2017

Keywords

Examples

			Product_{k>=1} (1 - i*x^k) = 1 + (0-1i)*x + (0-1i)*x^2 + (-1-1i)*x^3 + (-1-1i)*x^4 + (-2-1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
		

Crossrefs

Programs

  • Maple
    N:= 100:
    S := convert(series( add( (-1)^n*x^(n*(2*n+1))/(mul(1 - x^k,k = 1..2*n)), n = 0..floor(sqrt(N/2)) ), x, N+1 ), polynom):
    seq(coeff(S, x, n), n = 0..N); # Peter Bala, Jan 15 2021
  • Mathematica
    Re[CoefficientList[Series[QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 08 2017 *)

Formula

( i*x; x)_inf is the g.f. for a(n) + i*A292043(n).
(-i*x; x)_inf is the g.f. for a(n) + i*A292052(n).
a(n)^2 + A292043(n)^2 = A278420(n). - Vaclav Kotesovec, Sep 08 2017
From Peter Bala, Jan 15 2021: (Start)
G.f.: A(x) = Sum_{n >= 0} (-1)^n*x^(n*(2*n+1))/Product_{k = 1..2*n} (1 - x^k). Cf. A035294.
Conjectural g.f.: A(x) = (1/2)*Sum_{n >= 0} (-x)^(n*(n-1)/2)/Product_{k = 1..n} (1 - x^k). (End)

A292138 G.f.: Im(1/(-i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

0, -1, -1, 0, 0, 0, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, -1, -2, -2, -4, -6, -7, -8, -10, -13, -14, -14, -15, -17, -17, -15, -15, -16, -14, -10, -8, -6, -1, 5, 10, 14, 21, 31, 38, 43, 53, 64, 71, 77, 86, 97, 104, 108, 115, 124, 127, 125, 127, 130, 125, 116, 110, 103, 89
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2017

Keywords

Examples

			Product_{k>=1} 1/(1 + i*x^k) = 1 + (0-1i)*x + (-1-1i)*x^2 + (-1+0i)*x^3 + (-1+0i)*x^4 + (-1+0i)*x^5 + (-2+1i)*x^6 + (-1+2i)*x^7 + ...
		

Crossrefs

Formula

1/(-i*x; x)_inf is the g.f. for A292136(n) + i*a(n).
a(n) = -A292137(n).
Showing 1-3 of 3 results.