cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A278399 G.f.: Re((i; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

1, -1, -1, -2, -2, -3, -2, -3, -2, -2, 0, 0, 3, 4, 8, 9, 14, 16, 22, 24, 30, 32, 39, 40, 46, 46, 51, 48, 52, 46, 46, 36, 32, 16, 8, -15, -30, -60, -82, -122, -151, -200, -238, -296, -342, -412, -464, -542, -602, -686, -750, -841, -904, -996, -1058, -1146, -1198
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 20 2016

Keywords

Comments

The q-Pochhammer symbol (a; q)inf = Product{k>=0} (1 - a*q^k).

Crossrefs

Programs

  • Maple
    G := add((-1)^n*x^(n*(2*n-1))/mul(1 - x^k, k = 1..2*n), n = 0..7):
    S := series(G, x, 101):
    seq(coeff(S, x, j), j = 0..100); # Peter Bala, Feb 04 2021
  • Mathematica
    Re[(QPochhammer[I, x] + O[x]^60)[[3]]]

Formula

(i; x)_inf is the g.f. for a(n) + i*A278400(n).
G.f.: Sum_{n >= 0} (-1)^n^x^(n*(2*n-1))/Product_{k = 1..2*n} 1 - x^k. - Peter Bala, Feb 04 2021

A278400 G.f.: Im((i; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

-1, -1, -1, 0, 0, 1, 2, 3, 4, 6, 6, 8, 9, 10, 10, 11, 10, 10, 8, 6, 2, 0, -7, -12, -20, -28, -39, -48, -62, -74, -90, -104, -122, -136, -156, -171, -190, -204, -222, -232, -247, -252, -260, -258, -258, -244, -232, -204, -176, -130, -84, -15, 54, 148, 244, 368
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 20 2016

Keywords

Comments

The q-Pochhammer symbol (a; q)inf = Product{k>=0} (1 - a*q^k).

Crossrefs

Programs

  • Maple
    with(gfun): series(add((-1)^(n+1)*x^(n*(2*n+1))/mul(1 - x^k, k = 1..2*n+1), n = 0..6), x, 100): seriestolist(%); # Peter Bala, Feb 06 2021
  • Mathematica
    Im[(QPochhammer[I, x] + O[x]^60)[[3]]]

Formula

(i; x)_inf is the g.f. for A278399(n) + i*a(n).
G.f.: Sum_{n >= 0} (-1)^(n+1)*x^(n*(2*n+1))/Product_{k = 1..2*n+1} 1 - x^k. - Peter Bala, Feb 06 2021

A292042 G.f.: Re((i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

1, 0, 0, -1, -1, -2, -2, -3, -3, -4, -3, -4, -3, -3, -1, -1, 2, 3, 7, 9, 14, 16, 23, 26, 33, 37, 45, 48, 57, 60, 68, 70, 77, 76, 82, 78, 80, 72, 70, 55, 48, 26, 11, -19, -42, -84, -116, -169, -213, -278, -333, -413, -479, -572, -651, -757, -846, -965, -1062
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2017

Keywords

Examples

			Product_{k>=1} (1 - i*x^k) = 1 + (0-1i)*x + (0-1i)*x^2 + (-1-1i)*x^3 + (-1-1i)*x^4 + (-2-1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
		

Crossrefs

Programs

  • Maple
    N:= 100:
    S := convert(series( add( (-1)^n*x^(n*(2*n+1))/(mul(1 - x^k,k = 1..2*n)), n = 0..floor(sqrt(N/2)) ), x, N+1 ), polynom):
    seq(coeff(S, x, n), n = 0..N); # Peter Bala, Jan 15 2021
  • Mathematica
    Re[CoefficientList[Series[QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 08 2017 *)

Formula

( i*x; x)_inf is the g.f. for a(n) + i*A292043(n).
(-i*x; x)_inf is the g.f. for a(n) + i*A292052(n).
a(n)^2 + A292043(n)^2 = A278420(n). - Vaclav Kotesovec, Sep 08 2017
From Peter Bala, Jan 15 2021: (Start)
G.f.: A(x) = Sum_{n >= 0} (-1)^n*x^(n*(2*n+1))/Product_{k = 1..2*n} (1 - x^k). Cf. A035294.
Conjectural g.f.: A(x) = (1/2)*Sum_{n >= 0} (-x)^(n*(n-1)/2)/Product_{k = 1..n} (1 - x^k). (End)

A300574 Coefficient of x^n in 1/((1-x)(1+x^3)(1-x^5)(1+x^7)(1-x^9)...).

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 2, 1, 0, 0, 2, 2, 1, 0, 2, 3, 2, 0, 2, 4, 4, 0, 1, 4, 6, 2, 1, 4, 8, 4, 2, 4, 10, 6, 2, 3, 12, 10, 4, 2, 13, 14, 8, 2, 14, 18, 12, 2, 14, 22, 18, 3, 14, 26, 26, 6, 14, 29, 34, 10, 14, 32, 44, 16, 14, 34, 56, 26, 16, 34, 67, 38, 20, 34, 78, 52, 26
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2018

Keywords

Comments

By Theorem 1 of Craig, the values a(n) in this list are known to be nonnegative. Combined with Theorem 2 of Seo and Yee, this shows that a(n) = |number of partitions of n into odd parts with an odd index minus the number of partitions of n into odd parts with an even index|. - William Craig, Dec 31 2021

References

  • Seunghyun Seo and Ae Ja Yee, Index of seaweed algebras and integer partitions, Electronic Journal of Combinatorics, 27:1 (2020), #P1.47. See Conjecture 1 and Theorem 2.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/QPochhammer[x, -x^2], {x, 0, 100}], x]
    nmax = 100; CoefficientList[Series[Product[1/((1+x^(4*k-1))*(1-x^(4*k-3))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 04 2019 *)

Formula

O.g.f.: Product_{n >= 0} 1/(1 - (-1)^n x^(2n+1)).
a(n) = Sum (-1)^k where the sum is over all integer partitions of n into odd parts and k is the number of parts not congruent to 1 modulo 4.
a(n) has average order Gamma(1/4) * exp(sqrt(n/3)*Pi/2) / (2^(9/4) * 3^(1/8) * Pi^(3/4) * n^(5/8)). - Vaclav Kotesovec, Jun 04 2019

A278420 a(n) = (A278399(n)^2 + A278400(n)^2)/2.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 4, 9, 10, 20, 18, 32, 45, 58, 82, 101, 148, 178, 274, 306, 452, 512, 785, 872, 1258, 1450, 2061, 2304, 3274, 3796, 5108, 6056, 7954, 9376, 12200, 14733, 18500, 22608, 28004, 34354, 41905, 51752, 62122, 77090, 91764, 114640, 134560, 167690
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Abs[(QPochhammer[I, x] + O[x]^60)[[3]]]^2 / 2

Formula

a(n) = A292042(n)^2 + A292043(n)^2. - Vaclav Kotesovec, Sep 08 2017

A292137 G.f.: Im(1/(i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

0, 1, 1, 0, 0, 0, -1, -2, -2, -2, -2, -3, -3, -2, -2, -2, -1, 1, 2, 2, 4, 6, 7, 8, 10, 13, 14, 14, 15, 17, 17, 15, 15, 16, 14, 10, 8, 6, 1, -5, -10, -14, -21, -31, -38, -43, -53, -64, -71, -77, -86, -97, -104, -108, -115, -124, -127, -125, -127, -130, -125, -116
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2017

Keywords

Examples

			Product_{k>=1} 1/(1 - i*x^k) = 1 + (0+1i)*x + (-1+1i)*x^2 + (-1+0i)*x^3 + (-1+0i)*x^4 + (-1+0i)*x^5 + (-2-1i)*x^6 + (-1-2i)*x^7 + ...
		

Crossrefs

Programs

  • Maple
    N:= 100:
    S := convert(series( add( (-1)^n*x^(2*n+1)/(mul(1 - x^k,k = 1..2*n+1)), n = 0..N ), x, N+1 ), polynom):
    seq(coeff(S, x, n), n = 0..N); # Peter Bala, Jan 15 2021
  • Mathematica
    Im[CoefficientList[Series[1/QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 17 2017 *)

Formula

1/(i*x; x)_inf is the g.f. for A292136(n) + i*a(n).
a(n) = Sum (-1)^((k - 1)/2) where the sum is over all integer partitions of n into an odd number of parts and k is the number of parts. - Gus Wiseman, Mar 08 2018
G.f.: Sum_{n >= 0} (-1)^n * x^(2*n+1)/Product_{k = 1..2*n+1} (1 - x^k). - Peter Bala, Jan 15 2021

A292136 G.f.: Re(1/(i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

1, 0, -1, -1, -1, -1, -2, -1, 0, 0, 0, 1, 2, 3, 3, 4, 6, 6, 5, 6, 7, 6, 5, 5, 5, 3, 0, -2, -3, -6, -11, -13, -14, -19, -24, -27, -29, -33, -38, -40, -40, -43, -47, -46, -43, -43, -43, -38, -30, -26, -22, -12, 1, 11, 20, 36, 56, 71, 85, 106, 130, 149, 166, 190, 217
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2017

Keywords

Examples

			Product_{k>=1} 1/(1 - i*x^k) = 1 + (0+1i)*x + (-1+1i)*x^2 + (-1+0i)*x^3 + (-1+0i)*x^4 + (-1+0i)*x^5 + (-2-1i)*x^6 + (-1-2i)*x^7 + ...
Product_{k>=1} 1/(1 + i*x^k) = 1 + (0-1i)*x + (-1-1i)*x^2 + (-1+0i)*x^3 + (-1+0i)*x^4 + (-1+0i)*x^5 + (-2+1i)*x^6 + (-1+2i)*x^7 + ...
From _Peter Bala_, Jan 19 2021: (Start)
The number of partitions of n = 13 into an even number of parts is:
# parts (2*k)   2    4    6   8   10   12
# partitions    6   18   14   7    3    1
Hence a(13) = Sum (-1)^k = -6 + 18 - 14 + 7 - 3 + 1 = 3. (End)
		

Crossrefs

Programs

  • Maple
    N:= 100:
    S := convert(series( add( (-1)^n*x^(2*n)/(mul(1 - x^k,k = 1..2*n)), n = 0..N ), x, N+1 ), polynom):
    seq(coeff(S, x, n), n = 0..N); # Peter Bala, Jan 15 2021
  • Mathematica
    Re[CoefficientList[Series[1/QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 17 2017 *)

Formula

1/( i*x; x)_inf is the g.f. for a(n) + i*A292137(n).
1/(-i*x; x)_inf is the g.f. for a(n) + i*A292138(n).
From Peter Bala, Jan 19 2021: (Start)
a(n) = Sum (-1)^k, where the sum is over all integer partitions of n into an even number of parts and 2*k is the number of parts in a partition. An example is given below.
G.f.: Sum_{n >= 0} (-1)^n * x^(2*n)/Product_{k = 1..2*n} (1 - x^k). (End)

A292052 G.f.: Im((-i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 0, 0, -1, -2, -3, -4, -6, -7, -9, -10, -12, -13, -15, -15, -16, -16, -16, -14, -13, -9, -6, 0, 5, 14, 22, 34, 45, 60, 74, 93, 110, 132, 152, 177, 199, 226, 249, 277, 300, 328, 348, 373, 389, 408, 417, 428, 425, 424, 407, 389, 352, 314, 252
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2017

Keywords

Examples

			Product_{k>=1} (1 + i*x^k) = 1 + (0+1i)*x + (0+1i)*x^2 + (-1+1i)*x^3 + (-1+1i)*x^4 + (-2+1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    P:= mul(1+I*x^k, k=1..N):
    S:= series(P, x, N+1):
    seq(evalc(Im(coeff(S,x,j))),j=0..N); # Robert Israel, Sep 08 2017
  • Mathematica
    Im[CoefficientList[Series[QPochhammer[-I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 09 2017 *)

Formula

(-i*x; x)_inf is the g.f. for A292042(n) + i*a(n).
a(n) = -A292043(n).

A300575 Coefficient of x^n in (1+x)(1-x^3)(1+x^5)(1-x^7)(1+x^9)...

Original entry on oeis.org

1, 1, 0, -1, -1, 1, 1, -1, -2, 0, 2, 0, -3, -1, 3, 2, -3, -3, 3, 4, -3, -6, 2, 7, -1, -8, 0, 10, 2, -11, -4, 12, 7, -13, -10, 13, 13, -13, -17, 13, 22, -11, -26, 9, 31, -6, -36, 2, 41, 3, -46, -9, 51, 17, -55, -26, 59, 36, -62, -48, 63, 61, -64, -75, 64, 92, -60, -109, 55, 127, -48, -147, 37, 167
Offset: 0

Views

Author

Gus Wiseman, Mar 09 2018

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[QPochhammer[-x,-x^2],{x,0,100}],x]

Formula

O.g.f.: Product_{n >= 0} (1 + (-1)^n x^(2n+1)).
a(n) = Sum (-1)^k where the sum is over all strict integer partitions of n into odd parts and k is the number of parts not congruent to 1 modulo 4.
Showing 1-9 of 9 results.