cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A278399 G.f.: Re((i; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

1, -1, -1, -2, -2, -3, -2, -3, -2, -2, 0, 0, 3, 4, 8, 9, 14, 16, 22, 24, 30, 32, 39, 40, 46, 46, 51, 48, 52, 46, 46, 36, 32, 16, 8, -15, -30, -60, -82, -122, -151, -200, -238, -296, -342, -412, -464, -542, -602, -686, -750, -841, -904, -996, -1058, -1146, -1198
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 20 2016

Keywords

Comments

The q-Pochhammer symbol (a; q)inf = Product{k>=0} (1 - a*q^k).

Crossrefs

Programs

  • Maple
    G := add((-1)^n*x^(n*(2*n-1))/mul(1 - x^k, k = 1..2*n), n = 0..7):
    S := series(G, x, 101):
    seq(coeff(S, x, j), j = 0..100); # Peter Bala, Feb 04 2021
  • Mathematica
    Re[(QPochhammer[I, x] + O[x]^60)[[3]]]

Formula

(i; x)_inf is the g.f. for a(n) + i*A278400(n).
G.f.: Sum_{n >= 0} (-1)^n^x^(n*(2*n-1))/Product_{k = 1..2*n} 1 - x^k. - Peter Bala, Feb 04 2021

A278400 G.f.: Im((i; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

-1, -1, -1, 0, 0, 1, 2, 3, 4, 6, 6, 8, 9, 10, 10, 11, 10, 10, 8, 6, 2, 0, -7, -12, -20, -28, -39, -48, -62, -74, -90, -104, -122, -136, -156, -171, -190, -204, -222, -232, -247, -252, -260, -258, -258, -244, -232, -204, -176, -130, -84, -15, 54, 148, 244, 368
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 20 2016

Keywords

Comments

The q-Pochhammer symbol (a; q)inf = Product{k>=0} (1 - a*q^k).

Crossrefs

Programs

  • Maple
    with(gfun): series(add((-1)^(n+1)*x^(n*(2*n+1))/mul(1 - x^k, k = 1..2*n+1), n = 0..6), x, 100): seriestolist(%); # Peter Bala, Feb 06 2021
  • Mathematica
    Im[(QPochhammer[I, x] + O[x]^60)[[3]]]

Formula

(i; x)_inf is the g.f. for A278399(n) + i*a(n).
G.f.: Sum_{n >= 0} (-1)^(n+1)*x^(n*(2*n+1))/Product_{k = 1..2*n+1} 1 - x^k. - Peter Bala, Feb 06 2021

A292043 G.f.: Im((i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

0, -1, -1, -1, -1, -1, 0, 0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 15, 15, 16, 16, 16, 14, 13, 9, 6, 0, -5, -14, -22, -34, -45, -60, -74, -93, -110, -132, -152, -177, -199, -226, -249, -277, -300, -328, -348, -373, -389, -408, -417, -428, -425, -424, -407, -389, -352
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2017

Keywords

Examples

			Product_{k>=1} (1 - i*x^k) = 1 + (0-1i)*x + (0-1i)*x^2 + (-1-1i)*x^3 + (-1-1i)*x^4 + (-2-1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
		

Crossrefs

Programs

  • Maple
    N:= 100:
    S := convert(series( add( (-1)^(n+1)*x^((n+1)*(2*n+1))/(mul(1 - x^k,k = 1..2*n+1)), n = 0..floor(sqrt(N/2)) ), x, N+1 ), polynom):
    seq(coeff(S, x, n), n = 0..N); # Peter Bala, Feb 05 2021
  • Mathematica
    Im[CoefficientList[Series[QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 08 2017 *)

Formula

(i*x; x)_inf is the g.f. for A292042(n) + i*a(n).
A292042(n)^2 + a(n)^2 = A278420(n). - Vaclav Kotesovec, Sep 08 2017
From Peter Bala, Feb 05 2021: (Start)
G.f.: Sum_{n >= 0} (-1)^(n+1)*x^((n+1)*(2*n+1))/Product_{k = 1..2*n+1} (1 - x^k).
The 2 X 2 matrix Product_{k >= 1} [1, -x^k; x^k, 1] = [A(x), B(x); -B(x), A(x)], where A(x) is the g.f. of A292042 and B(x) is the g.f. for this sequence.
A(x)^2 + B(x)^2 = Product_{k >= 1} 1 + x^(2*k) = A000009(x^2).
A(x) + B(x) is the g.f. of A278399; B(x) - A(x) is the g.f. of A278400. (End)

A292042 G.f.: Re((i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

1, 0, 0, -1, -1, -2, -2, -3, -3, -4, -3, -4, -3, -3, -1, -1, 2, 3, 7, 9, 14, 16, 23, 26, 33, 37, 45, 48, 57, 60, 68, 70, 77, 76, 82, 78, 80, 72, 70, 55, 48, 26, 11, -19, -42, -84, -116, -169, -213, -278, -333, -413, -479, -572, -651, -757, -846, -965, -1062
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2017

Keywords

Examples

			Product_{k>=1} (1 - i*x^k) = 1 + (0-1i)*x + (0-1i)*x^2 + (-1-1i)*x^3 + (-1-1i)*x^4 + (-2-1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
		

Crossrefs

Programs

  • Maple
    N:= 100:
    S := convert(series( add( (-1)^n*x^(n*(2*n+1))/(mul(1 - x^k,k = 1..2*n)), n = 0..floor(sqrt(N/2)) ), x, N+1 ), polynom):
    seq(coeff(S, x, n), n = 0..N); # Peter Bala, Jan 15 2021
  • Mathematica
    Re[CoefficientList[Series[QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 08 2017 *)

Formula

( i*x; x)_inf is the g.f. for a(n) + i*A292043(n).
(-i*x; x)_inf is the g.f. for a(n) + i*A292052(n).
a(n)^2 + A292043(n)^2 = A278420(n). - Vaclav Kotesovec, Sep 08 2017
From Peter Bala, Jan 15 2021: (Start)
G.f.: A(x) = Sum_{n >= 0} (-1)^n*x^(n*(2*n+1))/Product_{k = 1..2*n} (1 - x^k). Cf. A035294.
Conjectural g.f.: A(x) = (1/2)*Sum_{n >= 0} (-x)^(n*(n-1)/2)/Product_{k = 1..n} (1 - x^k). (End)

A292052 G.f.: Im((-i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 0, 0, -1, -2, -3, -4, -6, -7, -9, -10, -12, -13, -15, -15, -16, -16, -16, -14, -13, -9, -6, 0, 5, 14, 22, 34, 45, 60, 74, 93, 110, 132, 152, 177, 199, 226, 249, 277, 300, 328, 348, 373, 389, 408, 417, 428, 425, 424, 407, 389, 352, 314, 252
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2017

Keywords

Examples

			Product_{k>=1} (1 + i*x^k) = 1 + (0+1i)*x + (0+1i)*x^2 + (-1+1i)*x^3 + (-1+1i)*x^4 + (-2+1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    P:= mul(1+I*x^k, k=1..N):
    S:= series(P, x, N+1):
    seq(evalc(Im(coeff(S,x,j))),j=0..N); # Robert Israel, Sep 08 2017
  • Mathematica
    Im[CoefficientList[Series[QPochhammer[-I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 09 2017 *)

Formula

(-i*x; x)_inf is the g.f. for A292042(n) + i*a(n).
a(n) = -A292043(n).

A292464 a(n) = A292136(n)^2 + A292137(n)^2.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 5, 5, 4, 4, 4, 10, 13, 13, 13, 20, 37, 37, 29, 40, 65, 72, 74, 89, 125, 178, 196, 200, 234, 325, 410, 394, 421, 617, 772, 829, 905, 1125, 1445, 1625, 1700, 2045, 2650, 3077, 3293, 3698, 4658, 5540, 5941, 6605, 7880, 9553, 10817, 11785, 13625
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Abs[CoefficientList[Series[1/QPochhammer[I*x, x], {x, 0, 100}], x]]^2 (* Vaclav Kotesovec, Sep 17 2017 *)

Formula

a(n) = A292136(n)^2 + A292138(n)^2.
a(n) = (A278401(n)^2 + A278402(n)^2)/2.
Showing 1-6 of 6 results.