cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A292464 a(n) = A292136(n)^2 + A292137(n)^2.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 5, 5, 4, 4, 4, 10, 13, 13, 13, 20, 37, 37, 29, 40, 65, 72, 74, 89, 125, 178, 196, 200, 234, 325, 410, 394, 421, 617, 772, 829, 905, 1125, 1445, 1625, 1700, 2045, 2650, 3077, 3293, 3698, 4658, 5540, 5941, 6605, 7880, 9553, 10817, 11785, 13625
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Abs[CoefficientList[Series[1/QPochhammer[I*x, x], {x, 0, 100}], x]]^2 (* Vaclav Kotesovec, Sep 17 2017 *)

Formula

a(n) = A292136(n)^2 + A292138(n)^2.
a(n) = (A278401(n)^2 + A278402(n)^2)/2.

A300574 Coefficient of x^n in 1/((1-x)(1+x^3)(1-x^5)(1+x^7)(1-x^9)...).

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 2, 1, 0, 0, 2, 2, 1, 0, 2, 3, 2, 0, 2, 4, 4, 0, 1, 4, 6, 2, 1, 4, 8, 4, 2, 4, 10, 6, 2, 3, 12, 10, 4, 2, 13, 14, 8, 2, 14, 18, 12, 2, 14, 22, 18, 3, 14, 26, 26, 6, 14, 29, 34, 10, 14, 32, 44, 16, 14, 34, 56, 26, 16, 34, 67, 38, 20, 34, 78, 52, 26
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2018

Keywords

Comments

By Theorem 1 of Craig, the values a(n) in this list are known to be nonnegative. Combined with Theorem 2 of Seo and Yee, this shows that a(n) = |number of partitions of n into odd parts with an odd index minus the number of partitions of n into odd parts with an even index|. - William Craig, Dec 31 2021

References

  • Seunghyun Seo and Ae Ja Yee, Index of seaweed algebras and integer partitions, Electronic Journal of Combinatorics, 27:1 (2020), #P1.47. See Conjecture 1 and Theorem 2.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/QPochhammer[x, -x^2], {x, 0, 100}], x]
    nmax = 100; CoefficientList[Series[Product[1/((1+x^(4*k-1))*(1-x^(4*k-3))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 04 2019 *)

Formula

O.g.f.: Product_{n >= 0} 1/(1 - (-1)^n x^(2n+1)).
a(n) = Sum (-1)^k where the sum is over all integer partitions of n into odd parts and k is the number of parts not congruent to 1 modulo 4.
a(n) has average order Gamma(1/4) * exp(sqrt(n/3)*Pi/2) / (2^(9/4) * 3^(1/8) * Pi^(3/4) * n^(5/8)). - Vaclav Kotesovec, Jun 04 2019

A292136 G.f.: Re(1/(i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

1, 0, -1, -1, -1, -1, -2, -1, 0, 0, 0, 1, 2, 3, 3, 4, 6, 6, 5, 6, 7, 6, 5, 5, 5, 3, 0, -2, -3, -6, -11, -13, -14, -19, -24, -27, -29, -33, -38, -40, -40, -43, -47, -46, -43, -43, -43, -38, -30, -26, -22, -12, 1, 11, 20, 36, 56, 71, 85, 106, 130, 149, 166, 190, 217
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2017

Keywords

Examples

			Product_{k>=1} 1/(1 - i*x^k) = 1 + (0+1i)*x + (-1+1i)*x^2 + (-1+0i)*x^3 + (-1+0i)*x^4 + (-1+0i)*x^5 + (-2-1i)*x^6 + (-1-2i)*x^7 + ...
Product_{k>=1} 1/(1 + i*x^k) = 1 + (0-1i)*x + (-1-1i)*x^2 + (-1+0i)*x^3 + (-1+0i)*x^4 + (-1+0i)*x^5 + (-2+1i)*x^6 + (-1+2i)*x^7 + ...
From _Peter Bala_, Jan 19 2021: (Start)
The number of partitions of n = 13 into an even number of parts is:
# parts (2*k)   2    4    6   8   10   12
# partitions    6   18   14   7    3    1
Hence a(13) = Sum (-1)^k = -6 + 18 - 14 + 7 - 3 + 1 = 3. (End)
		

Crossrefs

Programs

  • Maple
    N:= 100:
    S := convert(series( add( (-1)^n*x^(2*n)/(mul(1 - x^k,k = 1..2*n)), n = 0..N ), x, N+1 ), polynom):
    seq(coeff(S, x, n), n = 0..N); # Peter Bala, Jan 15 2021
  • Mathematica
    Re[CoefficientList[Series[1/QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 17 2017 *)

Formula

1/( i*x; x)_inf is the g.f. for a(n) + i*A292137(n).
1/(-i*x; x)_inf is the g.f. for a(n) + i*A292138(n).
From Peter Bala, Jan 19 2021: (Start)
a(n) = Sum (-1)^k, where the sum is over all integer partitions of n into an even number of parts and 2*k is the number of parts in a partition. An example is given below.
G.f.: Sum_{n >= 0} (-1)^n * x^(2*n)/Product_{k = 1..2*n} (1 - x^k). (End)

A292138 G.f.: Im(1/(-i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

Original entry on oeis.org

0, -1, -1, 0, 0, 0, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, -1, -2, -2, -4, -6, -7, -8, -10, -13, -14, -14, -15, -17, -17, -15, -15, -16, -14, -10, -8, -6, -1, 5, 10, 14, 21, 31, 38, 43, 53, 64, 71, 77, 86, 97, 104, 108, 115, 124, 127, 125, 127, 130, 125, 116, 110, 103, 89
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2017

Keywords

Examples

			Product_{k>=1} 1/(1 + i*x^k) = 1 + (0-1i)*x + (-1-1i)*x^2 + (-1+0i)*x^3 + (-1+0i)*x^4 + (-1+0i)*x^5 + (-2+1i)*x^6 + (-1+2i)*x^7 + ...
		

Crossrefs

Formula

1/(-i*x; x)_inf is the g.f. for A292136(n) + i*a(n).
a(n) = -A292137(n).

A300575 Coefficient of x^n in (1+x)(1-x^3)(1+x^5)(1-x^7)(1+x^9)...

Original entry on oeis.org

1, 1, 0, -1, -1, 1, 1, -1, -2, 0, 2, 0, -3, -1, 3, 2, -3, -3, 3, 4, -3, -6, 2, 7, -1, -8, 0, 10, 2, -11, -4, 12, 7, -13, -10, 13, 13, -13, -17, 13, 22, -11, -26, 9, 31, -6, -36, 2, 41, 3, -46, -9, 51, 17, -55, -26, 59, 36, -62, -48, 63, 61, -64, -75, 64, 92, -60, -109, 55, 127, -48, -147, 37, 167
Offset: 0

Views

Author

Gus Wiseman, Mar 09 2018

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[QPochhammer[-x,-x^2],{x,0,100}],x]

Formula

O.g.f.: Product_{n >= 0} (1 + (-1)^n x^(2n+1)).
a(n) = Sum (-1)^k where the sum is over all strict integer partitions of n into odd parts and k is the number of parts not congruent to 1 modulo 4.

A293269 G.f.: Im(1/(1 + i*x/(1 + i*x^2/(1 + i*x^3/(1 + i*x^4/(1 + i*x^5/(1 + ...))))))), a continued fraction, where i is the imaginary unit.

Original entry on oeis.org

0, -1, 0, 1, 2, 0, -3, -5, -1, 7, 12, 3, -16, -27, -7, 37, 64, 20, -85, -152, -55, 191, 356, 141, -436, -841, -364, 991, 1988, 938, -2233, -4674, -2369, 5044, 11004, 5963, -11361, -25898, -14959, 25467, 60821, 37245, -56995, -142783, -92384, 127136, 334946, 228385, -282392
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 04 2017

Keywords

Examples

			G.f. A(x) = Sum_{n>=0} (A293268(n) + i*a(n))*x^n = 1 - i*x - x^2 - (1 - i)*x^3 + (1 + 2*i)*x^4 + 3*x^5 + (2 - 3*i)*x^6 - (2 + 5*i)*x^7 - (7 + i)*x^8 - ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 48; Im[CoefficientList[Series[1/(1 + ContinuedFractionK[I x^k, 1, {k, 1, nmax}]), {x, 0, nmax}], x]]
    nmax = 48; Im[CoefficientList[Series[Sum[I^k x^(k (k + 1)) / Product[1 - x^m, {m, 1, k}], {k, 0, nmax}] / Sum[I^k x^(k^2) / Product[1 - x^m, {m, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Im( (Sum_{k>=0} i^k*x^(k*(k+1))/Product_{m=1..k} (1 - x^m)) / (Sum_{k>=0} i^k*x^(k^2)/Product_{m=1..k} (1 - x^m)) ), where i is the imaginary unit.
Showing 1-6 of 6 results.