A292164 Expansion of Product_{k>=1} (1 - k^2*x^k).
1, -1, -4, -5, -7, 27, 17, 167, 110, -42, 10, -706, -4001, -3915, 3079, -18640, 9869, 21403, 130565, 107250, -15661, 420664, 599540, -161785, -1232833, -5836888, -5129796, 6516714, -29068180, -14953045, -41490510, 20261320, 30395771, 441235155, 205289550
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) +`if`(i>n, 0, i^2*b(n-i, i)))) end: a:= proc(n) option remember; `if`(n=0, 1, -add(b(n-i$2)*a(i$2), i=0..n-1)) end: seq(a(n), n=0..40); # Alois P. Heinz, Sep 10 2017
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, i^2*b[n - i, i]]]]; a[n_] := a[n] = If[n == 0, 1, -Sum[b[n - i, n - i]*a[i], {i, 0, n - 1}]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 04 2024, after Alois P. Heinz *)
-
PARI
N=66; x='x+O('x^N); Vec(prod(n=1, N, 1-n^2*x^n))
Formula
Convolution inverse of A077335.
G.f.: exp(-Sum_{k>=1} Sum_{j>=1} j^(2*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 18 2018