cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292179 Decimal expansion of: Sum_{n>=1} (1/2 - 1/2^n)^n / n.

Original entry on oeis.org

0, 6, 6, 5, 1, 1, 0, 4, 1, 7, 7, 0, 5, 0, 8, 9, 6, 9, 6, 9, 8, 0, 0, 8, 0, 0, 4, 1, 7, 7, 2, 1, 3, 9, 0, 8, 8, 3, 1, 4, 1, 6, 7, 9, 5, 9, 2, 5, 9, 1, 8, 3, 5, 3, 8, 5, 7, 5, 4, 7, 1, 0, 3, 2, 4, 4, 1, 6, 3, 5, 1, 0, 2, 8, 8, 2, 0, 5, 9, 6, 7, 2, 1, 0, 7, 1, 9, 3, 5, 7, 4, 5, 0, 5, 2, 0, 9, 6, 3, 7, 3, 2, 9, 0, 1, 7, 0, 3, 6, 5, 2, 0, 8, 7, 7, 3, 4, 6, 4, 8, 9, 6, 8, 2, 6, 9, 7, 8, 6, 3, 2, 0, 3, 8, 7, 0, 2, 2, 1, 4, 8, 7, 1, 5, 1, 7, 7, 9, 6, 0
Offset: 0

Views

Author

Paul D. Hanna, Oct 05 2017

Keywords

Comments

This constant plus A292178 equals log(2), due to the identity (at x = 1/2):
Sum_{n=-oo..+oo, n<>0} (x - x^n)^n / n = -log(1-x).
Conjecture: Sum_{n in Z - {0}} (x - a^n)^n / n = -log(1 - x) for |x| < 1 and |a| < 1. - Peter Bala, Mar 02 2025

Examples

			Constant t = 0.06651104177050896969800800417721390883141679592591835385754710...
where t = 0/(1*2) + 1^2/(2*2^4) + 3^3/(3*2^9) + 7^4/(4*2^16) + 15^5/(5*2^25) + 31^6/(6*2^36) + 63^7/(7*2^49) + 127^8/(8*2^64) + 255^9/(9*2^81) + 511^10/(10*2^100) + 1023^11/(11*2^121) + 2047^12/(12*2^144) + 4095^13/(13*2^169) + 8191^14/(14*2^196) + 16383^15/(15*2^225) +...
Also,
log(2) - t = 2/(1*3) - 4/(2*7^2) + 8/(3*15^3) - 16/(4*31^4) + 32/(5*63^5) - 64/(6*127^6) + 128/(7*255^7) - 256/(8*511^8) + 512/(9*1023^9) - 1024/(10*2047^10) + 2048/(11*4095^11) - 4096/(12*8191^12) + 8192/(13*16383^13) - 16384/(14*32767^14) + 32768/(15*65535^15) +... (constant A292178)
		

Crossrefs

Cf. A292178.

Formula

Constant: Sum_{n>=1} (2^(n-1) - 1)^n / (n * 2^(n^2)).
Constant: log(2) - Sum_{n>=1} -(-1)^n * 2^n / (n * (2^(n+1) - 1)^n).