cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A292178 Decimal expansion of: Sum_{n>=1} -1 / (n * (1/2 - 2^n)^n).

Original entry on oeis.org

6, 2, 6, 6, 3, 6, 1, 3, 8, 7, 8, 9, 4, 3, 6, 3, 3, 9, 7, 1, 9, 2, 2, 4, 1, 1, 7, 2, 8, 0, 9, 6, 2, 6, 5, 9, 2, 4, 4, 0, 8, 3, 3, 3, 8, 4, 3, 4, 3, 3, 6, 9, 0, 0, 2, 6, 3, 1, 3, 2, 9, 0, 6, 2, 4, 9, 2, 3, 0, 1, 1, 1, 6, 8, 1, 4, 8, 8, 7, 4, 8, 3, 9, 5, 1, 4, 3, 9, 6, 9, 5, 4, 5, 8, 9, 7, 7, 2, 3, 8, 0, 9, 0, 9, 9, 7, 7, 7, 3, 6, 8, 4, 8, 2, 9, 5, 1, 0, 8, 4, 7, 1, 7, 2, 5, 0, 4, 4, 9, 4, 3, 7, 7, 4, 3, 5, 3, 4, 8, 8, 3, 9, 5, 5, 5, 7, 3, 6, 7, 4
Offset: 0

Views

Author

Paul D. Hanna, Oct 05 2017

Keywords

Comments

This constant plus A292179 equals log(2), due to the identity (at x = 1/2):
Sum_{n=-oo..+oo, n<>0} (x - x^n)^n / n = -log(1-x).
More generally, it appears that Sum_{n = -oo..+oo, n <> 0} (x - a^n)^n / n = -log(1 - x) for |x| < 1 and |a| < 1. - Peter Bala, Nov 03 2024

Examples

			Constant t = 0.62663613878943633971922411728096265924408333843433690026313290...
where t = 2/(1*3) - 4/(2*7^2) + 8/(3*15^3) - 16/(4*31^4) + 32/(5*63^5) - 64/(6*127^6) + 128/(7*255^7) - 256/(8*511^8) + 512/(9*1023^9) - 1024/(10*2047^10) + 2048/(11*4095^11) - 4096/(12*8191^12) + 8192/(13*16383^13) - 16384/(14*32767^14) + 32768/(15*65535^15) +...
Also,
log(2) - t = 0/(1*2) + 1^2/(2*2^4) + 3^3/(3*2^9) + 7^4/(4*2^16) + 15^5/(5*2^25) + 31^6/(6*2^36) + 63^7/(7*2^49) + 127^8/(8*2^64) + 255^9/(9*2^81) + 511^10/(10*2^100) + 1023^11/(11*2^121) + 2047^12/(12*2^144) + 4095^13/(13*2^169) + 8191^14/(14*2^196) + 16383^15/(15*2^225) +... (constant A292179)
		

Crossrefs

Cf. A292179.

Formula

Constant: Sum_{n>=1} -(-1)^n * 2^n / (n * (2^(n+1) - 1)^n).
Constant: log(2) - Sum_{n>=1} (2^(n-1) - 1)^n / (n * 2^(n^2)).

A293381 Decimal expansion of Sum_{n>=1} (3^n - 2)^n / (n * 2^n * 3^(n^2)).

Original entry on oeis.org

3, 0, 0, 0, 4, 9, 6, 8, 9, 8, 5, 9, 8, 6, 4, 7, 3, 2, 8, 7, 1, 8, 7, 7, 5, 0, 1, 5, 8, 5, 0, 5, 5, 7, 2, 3, 0, 5, 4, 1, 5, 8, 5, 5, 9, 3, 5, 3, 4, 9, 9, 5, 4, 3, 7, 9, 8, 6, 8, 9, 7, 0, 1, 4, 6, 0, 9, 1, 4, 7, 5, 4, 4, 3, 3, 9, 8, 7, 1, 3, 8, 1, 0, 6, 9, 9, 6, 9, 7, 1, 2, 3, 4, 1, 9, 4, 4, 5, 0, 5, 4, 4, 0, 4, 4, 9, 9, 3, 4, 7, 5, 5, 7, 6, 9, 0, 0, 6, 7, 4
Offset: 0

Views

Author

Paul D. Hanna, Oct 12 2017

Keywords

Comments

This constant plus A293382 equals log(2), due to the identity:
Sum_{n=-oo..+oo, n<>0} (x - y^n)^n / n = -log(1-x), here x = 1/2, y = 1/3.

Examples

			Constant t = 0.3000496898598647328718775015850557230541585593534995437986897...
such that
t = (3 - 2)/(1*2*3) + (3^2 - 2)^2/(2*2^2*3^4) + (3^3 - 2)^3/(3*2^3*3^9) + (3^4 - 2)^4/(4*2^4*3^16) + (3^5 - 2)^5/(5*2^5*3^25) + (3^6 - 2)^6/(6*2^6*3^36) + (3^7 - 2)^7/(7*2^7*3^49) +...+ (3^n - 2)^n / (n * 2^n * 3^(n^2)) +...
More explicitly,
t = 1/(1*2*3) + 7^2/(2*4*3^4) + 25^3/(3*8*3^9) + 79^4/(4*16*3^16) + 241^5/(5*32*3^25) + 727^6/(6*64*3^36) + 2185^7/(7*128*3^49) + 6559^8/(8*256*3^64) + 19681^9/(9*512*3^81) + 59047^10/(10*1024*3^100) + 177145^11/(11*2048*3^121) + 531439^12/(12*4096*3^144) +...
Also,
log(2) - t = 2/(2*3-1) - 2^2/(2*(2*3^2-1)^2) + 2^3/(3*(2*3^3-1)^3) - 2^4/(4*(2*3^4-1)^4) + 2^5/(5*(2*3^5-1)^5) - 2^6/(6*(2*3^6-1)^6) + 2^7/(7*(2*3^7-1)^7) - 2^8/(8*(2*3^8-1)^8) +...+ -(-1)^n * 2^n / (n * (2*3^n - 1)^n) +...
		

Crossrefs

Programs

  • PARI
    {t = suminf(n=1, 1.*(3^n - 2)^n / (n * 2^n * 3^(n^2)) )}
    for(n=1,120, print1(floor(10^n*t)%10,", "))

Formula

Constant: Sum_{n>=1} (3^n - 2)^n / (n * 2^n * 3^(n^2)).
Constant: log(2) - Sum_{n>=1} -(-1)^n * 2^n / (n * (2*3^n - 1)^n).

A293382 Decimal expansion of Sum_{n>=1} -(-1)^n * 2^n / (n * (2*3^n - 1)^n).

Original entry on oeis.org

3, 9, 3, 0, 9, 7, 4, 9, 0, 7, 0, 0, 0, 8, 0, 5, 7, 6, 5, 4, 5, 3, 5, 4, 6, 1, 9, 8, 7, 3, 1, 2, 0, 8, 4, 5, 0, 2, 1, 3, 4, 1, 5, 7, 5, 0, 0, 6, 7, 5, 5, 7, 1, 0, 3, 2, 1, 9, 9, 0, 3, 0, 8, 0, 3, 2, 4, 7, 8, 8, 6, 7, 5, 3, 5, 7, 0, 7, 5, 7, 7, 4, 9, 8, 8, 6, 6, 3, 5, 5, 7, 6, 2, 2, 2, 4, 2, 3, 6, 9, 9, 7, 9, 5, 6, 4, 8, 7, 5, 4, 4, 9, 9, 3, 7, 8, 5, 0, 5, 9
Offset: 0

Views

Author

Paul D. Hanna, Oct 13 2017

Keywords

Comments

This constant plus A293381 equals log(2), due to the identity:
Sum_{n=-oo..+oo, n<>0} (x - y^n)^n / n = -log(1-x), here x = 1/2, y = 1/3.

Examples

			Constant t = 0.3930974907000805765453546198731208450213415750067557103219903...
such that
t = 2/(2*3-1) - 2^2/(2*(2*3^2-1)^2) + 2^3/(3*(2*3^3-1)^3) - 2^4/(4*(2*3^4-1)^4) + 2^5/(5*(2*3^5-1)^5) - 2^6/(6*(2*3^6-1)^6) + 2^7/(7*(2*3^7-1)^7) - 2^8/(8*(2*3^8-1)^8) +...+ -(-1)^n * 2^n / (n * (2*3^n - 1)^n) +...
More explicitly,
t = 2/5 - 4/(2*17^2) + 8/(3*53^3) - 16/(4*161^4) + 32/(5*485^5) - 64/(6*1457^6) + 128/(7*4373^7) - 256/(8*13121^8) + 512/(9*39365^9) - 1024/(10*118097^10) +...
Also,
log(2) - t = (3 - 2)/(1*2*3) + (3^2 - 2)^2/(2*2^2*3^4) + (3^3 - 2)^3/(3*2^3*3^9) + (3^4 - 2)^4/(4*2^4*3^16) + (3^5 - 2)^5/(5*2^5*3^25) + (3^6 - 2)^6/(6*2^6*3^36) + (3^7 - 2)^7/(7*2^7*3^49) +...+ (3^n - 2)^n / (n * 2^n * 3^(n^2)) +...
		

Crossrefs

Programs

  • PARI
    {t = suminf(n=1, -1.*(-1)^n * 2^n / (n * (2*3^n - 1)^n) )}
    for(n=1,120, print1(floor(10^n*t)%10,", "))

Formula

Constant: Sum_{n>=1} -(-1)^n * 2^n / (n * (2*3^n - 1)^n).
Constant: log(2) - Sum_{n>=1} (3^n - 2)^n / (n * 2^n * 3^(n^2)).

A293383 Decimal expansion of Sum_{n>=1} (2^(n+1) - 3)^n / (n * 3^n * 2^(n^2)).

Original entry on oeis.org

3, 9, 2, 7, 7, 1, 5, 7, 5, 5, 5, 5, 0, 6, 7, 5, 1, 1, 8, 5, 9, 1, 1, 1, 8, 7, 7, 2, 6, 1, 2, 2, 8, 0, 9, 1, 3, 4, 2, 7, 2, 3, 4, 4, 9, 0, 4, 2, 2, 6, 3, 4, 8, 6, 2, 0, 2, 3, 8, 8, 3, 4, 3, 8, 7, 3, 1, 7, 5, 1, 9, 7, 9, 9, 7, 0, 9, 7, 5, 9, 1, 8, 4, 9, 7, 0, 7, 2, 1, 8, 1, 6, 3, 4, 7, 6, 2, 4, 5, 5, 1, 3, 2, 1, 8, 9, 6, 7, 0, 1, 3, 5, 2, 4, 8, 6, 2, 6, 6, 3
Offset: 0

Views

Author

Paul D. Hanna, Oct 13 2017

Keywords

Comments

This constant plus A293384 equals log(3), due to the identity:
Sum_{n=-oo..+oo, n<>0} (x - y^n)^n / n = -log(1-x), here x = 2/3, y = 1/2.

Examples

			Constant t = 0.3927715755550675118591118772612280913427234490422634862023883438....
such that
t = (2^2 - 3)/(1*3*2) + (2^3 - 3)^2/(2*3^2*2^4) + (2^4 - 3)^3/(3*3^3*2^9) + (2^5 - 3)^4/(4*3^4*2^16) + (2^6 - 3)^5/(5*3^5*2^25) + (2^7 - 3)^6/(6*3^6*2^36) + (2^8 - 3)^7/(7*3^7*2^49) + (2^9 - 3)^8/(8*3^8*2^64) + (2^10 - 3)^9/(9*3^9*2^81) +...+ (2^(n+1) - 3)^n/(n * 3^n * 2^(n^2)) +...
More explicitly,
t = 1/(1*3*2) + 5^2/(2*9*2^4) + 13^3/(3*27*2^9) + 29^4/(4*81*2^16) + 61^5/(5*243*2^25) + 125^6/(6*729*2^36) + 253^7/(7*2187*2^49) + 509^8/(8*6561*2^64) + 1021^9/(9*19683*2^81) + 2045^10/(10*59049*2^100) + 4093^11/(11*177147*2^121) + 8189^12/(12*531441*2^144) +...
Also,
log(3) - t = 3/(1*2*(3-1)) - 3^2/(2*4*(3*2-1)^2) + 3^3/(3*8*(3*2^2-1)^3) - 3^4/(4*16*(3*2^3-1)^4) + 3^5/(5*32*(3*2^4-1)^5) - 3^6/(6*64*(3*2^5-1)^6) + 3^7/(7*128*(3*2^6-1)^7) +...+ -(-1)^n*3^n/(n*2^n*(3*2^(n-1) - 1)^n) +...
		

Crossrefs

Programs

  • PARI
    {t = suminf(n=1, 1.*(2^(n+1) - 3)^n / (n * 3^n * 2^(n^2)) )}
    for(n=1,120, print1(floor(10^n*t)%10,", "))

Formula

Constant: Sum_{n>=1} (2^(n+1) - 3)^n / (n * 3^n * 2^(n^2)).
Constant: log(3) - Sum_{n>=1} -(-1)^n * 3^n / (n * 2^n * (3*2^(n-1) - 1)^n).

A293384 Decimal expansion of Sum_{n>=1} -(-1)^n * 3^n / (n * 2^n * (3*2^(n-1) - 1)^n).

Original entry on oeis.org

7, 0, 5, 8, 4, 0, 7, 1, 3, 1, 1, 3, 0, 4, 2, 1, 7, 9, 5, 3, 6, 1, 3, 3, 3, 5, 9, 6, 6, 1, 2, 9, 7, 6, 1, 3, 3, 0, 4, 7, 6, 7, 1, 0, 8, 7, 8, 0, 4, 8, 5, 9, 6, 5, 5, 3, 2, 3, 0, 5, 9, 8, 9, 7, 6, 4, 3, 1, 9, 0, 9, 5, 2, 2, 1, 5, 1, 1, 3, 7, 5, 0, 2, 3, 9, 0, 8, 5, 3, 6, 6, 5, 0, 2, 5, 5, 8, 4, 3, 2, 7, 4, 7, 5, 1, 0, 6, 2, 0, 5, 2, 4, 3, 3, 0, 0, 3, 0, 7, 8
Offset: 0

Views

Author

Paul D. Hanna, Oct 13 2017

Keywords

Comments

This constant plus A293383 equals log(3), due to the identity:
Sum_{n=-oo..+oo, n<>0} (x - y^n)^n / n = -log(1-x), here x = 2/3, y = 1/2.

Examples

			Constant t = 0.7058407131130421795361333596612976133047671087804859655323059...
such that
t = 3/(1*2*(3-1)) - 3^2/(2*4*(3*2-1)^2) + 3^3/(3*8*(3*2^2-1)^3) - 3^4/(4*16*(3*2^3-1)^4) + 3^5/(5*32*(3*2^4-1)^5) - 3^6/(6*64*(3*2^5-1)^6) + 3^7/(7*128*(3*2^6-1)^7) - 3^8/(8*256*(3*2^7-1)^8) +...+ -(-1)^n*3^n/(n*2^n*(3*2^(n-1) - 1)^n) +...
More explicitly,
t = 3/(1*2*2) - 9/(2*4*5^2) + 27/(3*8*11^3) - 81/(4*16*23^4) + 243/(5*32*47^5) - 729/(6*64*95^6) + 2187/(7*128*191^7) - 6561/(8*256*383^8) + 19683/(9*512*767^9) - 59049/(10*1024*1535^10) + 177147/(11*2048*3071^11) - 531441/(12*4096*6143^12) +...
Also,
log(3) - t = (2^2 - 3)/(1*3*2) + (2^3 - 3)^2/(2*3^2*2^4) + (2^4 - 3)^3/(3*3^3*2^9) + (2^5 - 3)^4/(4*3^4*2^16) + (2^6 - 3)^5/(5*3^5*2^25) + (2^7 - 3)^6/(6*3^6*2^36) + (2^8 - 3)^7/(7*3^7*2^49) + (2^9 - 3)^8/(8*3^8*2^64) + (2^10 - 3)^9/(9*3^9*2^81) +...+ (2^(n+1) - 3)^n/(n * 3^n * 2^(n^2)) +...
		

Crossrefs

Programs

  • PARI
    {t = suminf(n=1, -1.*(-1)^n * 3^n / (n * 2^n * (3*2^(n-1) - 1)^n) )}
    for(n=1,120, print1(floor(10^n*t)%10,", "))

Formula

Constant: Sum_{n>=1} -(-1)^n * 3^n / (n * 2^n * (3*2^(n-1) - 1)^n).
Constant: log(3) - Sum_{n>=1} (2^(n+1) - 3)^n / (n * 3^n * 2^(n^2)).
Showing 1-5 of 5 results.