A292278 a(n) = (Fibonacci(3*n-1) + 1)/2 for n >= 1.
1, 3, 11, 45, 189, 799, 3383, 14329, 60697, 257115, 1089155, 4613733, 19544085, 82790071, 350704367, 1485607537, 6293134513, 26658145587, 112925716859, 478361013021, 2026369768941, 8583840088783, 36361730124071, 154030760585065, 652484772464329
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Hideyuki Ohtsuka, Problem B-1211, The Fibonacci Quarterly, Volume 55, Number 3 (August 2017), p. 276 (see Comments section).
- Index entries for linear recurrences with constant coefficients, signature (5,-3,-1).
Programs
-
Magma
[(Fibonacci(3*n-1)+1)/2: n in [1..30]];
-
Mathematica
Table[(Fibonacci[3 n - 1] + 1) / 2, {n, 40}] LinearRecurrence[{5,-3,-1},{1,3,11},30] (* Harvey P. Dale, Mar 06 2024 *)
-
PARI
a(n) = (fibonacci(3*n-1)+1)/2; \\ Altug Alkan, Sep 13 2017
Formula
G.f.: x*(1 - 2*x - x^2)/((1 - x)*(1 - 4*x -x^2)).
a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3).
Extensions
Edited by Bruno Berselli, Sep 14 2017
Comments