A292310 Triangular numbers that are equidistant from two other triangular numbers.
3, 21, 28, 36, 78, 105, 153, 171, 190, 210, 253, 325, 351, 378, 465, 528, 666, 703, 903, 946, 990, 1035, 1128, 1176, 1275, 1378, 1485, 1540, 1596, 1653, 1711, 1770, 1891, 1953, 2278, 2346, 2556, 2628, 2775, 2926, 3003, 3081, 3160, 3403, 3570, 3741, 3828, 4095, 4186, 4278, 4371, 4656
Offset: 1
Keywords
Examples
3 is in the sequence because 0 = A000217(0), 6 = A000217(3), and the distances from 3 to 0 and 3 to 6 are the same. 153 is in the sequence because 153 = A000217(17), 6 = A000217(2), 300 = A000217(24), and the two distances 300-153 = 153-6 = 147 are the same.
Programs
-
Maple
isA292310 := proc(n) local ilow ; if isA000217(n) then for ilow from 0 do tilow := A000217(ilow) ; if tilow >= n then return false ; elif isA000217(2*n-tilow) then return true ; end if; end do: else false; end if; end proc: for n from 1 to 5000 do if isA292310(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Oct 01 2017
-
Mathematica
Module[{t = 3, k = 2, i, e, v}, Reap[While[t <= 6000, i = k; e = 0; v = t + i; While[i > 0 && e == 0, If[IntegerQ@Sqrt[8v + 1], e = 1; Sow[t]]; i--; v += i]; k++; t += k]][[2, 1]]] (* Jean-François Alcover, Jun 25 2023, after first PARI code *)
-
PARI
t=3; k=2; while(t<=6000, i=k; e=0; v=t+i; while(i>0&&e==0, if(issquare(8*v+1), e=1; print1(t,", ")); i--; v+=i); k++; t+=k)
-
PARI
upto(n) = {my(t = 0, i = 0, triangulars = List([0]), res = List); while(t <= n, i++; t+=i; listput(triangulars, t)); for(i=2,#triangulars, tr = triangulars[i]<<1; for(j = 1, i-1, if(issquare(8 * (tr - triangulars[j]) + 1), listput(res, triangulars[i]); next(2)))); res} \\ David A. Corneth, Oct 04 2017
Formula
a(n) = A292309(n)/3.
Extensions
Term 105 added by David A. Corneth, Oct 04 2017
Comments