A292370 A binary encoding of the zeros in base-4 representation of n.
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 7, 6, 6, 6, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 3, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 2, 2, 2, 1, 0, 0, 0, 1
Offset: 0
Examples
n a(n) base-4(n) binary(a(n)) A007090(n) A007088(a(n)) -- ---- ---------- ------------ 1 0 1 0 2 0 2 0 3 0 3 0 4 1 10 1 5 0 11 0 6 0 12 0 7 0 13 0 8 1 20 1 9 0 21 0 10 0 22 0 11 0 23 0 12 1 30 1 13 0 31 0 14 0 32 0 15 0 33 0 16 3 100 11 17 2 101 10
Links
Crossrefs
Programs
-
Mathematica
Table[FromDigits[IntegerDigits[n, 4] /. k_ /; IntegerQ@ k :> If[k == 0, 1, 0], 2], {n, 0, 120}] (* Michael De Vlieger, Sep 21 2017 *)
-
Python
from sympy.ntheory.factor_ import digits def a(n): k=digits(n, 4)[1:] return 0 if n==0 else int("".join('1' if i==0 else '0' for i in k), 2) print([a(n) for n in range(111)]) # Indranil Ghosh, Sep 21 2017
-
Scheme
(define (A292370 n) (if (zero? n) n (let loop ((n n) (b 1) (s 0)) (if (< n 4) s (let ((d (modulo n 4))) (if (zero? d) (loop (/ n 4) (+ b b) (+ s b)) (loop (/ (- n d) 4) (+ b b) s)))))))