cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A292383 Base-2 expansion of a(n) encodes the steps where numbers of the form 4k+3 are encountered when map x -> A252463(x) is iterated down to 1, starting from x=n.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 5, 0, 0, 4, 11, 4, 22, 10, 5, 0, 44, 0, 89, 8, 8, 22, 179, 8, 0, 44, 1, 20, 358, 10, 717, 0, 20, 88, 11, 0, 1434, 178, 45, 16, 2868, 16, 5737, 44, 8, 358, 11475, 16, 0, 0, 89, 88, 22950, 2, 17, 40, 176, 716, 45901, 20, 91802, 1434, 17, 0, 40, 40, 183605, 176, 356, 22, 367211, 0, 734422, 2868, 1, 356, 22, 90, 1468845, 32, 0, 5736, 2937691, 32
Offset: 1

Views

Author

Antti Karttunen, Sep 15 2017

Keywords

Examples

			For n = 3, the starting value is of the form 4k+3, after which follows A252463(3) = 2, and A252463(2) = 1, the end point of iteration, and neither 2 nor 1 is of the form 4k+3, thus a(3) = 1*(2^0) + 0*(2^1) + 0*(2^2) = 1.
For n = 5, the starting value is not of the form 4k+3, after which follows A252463(5) = 3 (which is), continuing as before as 3 -> 2 -> 1, thus a(5) = 0*(2^0) + 1*(2^1) + 0*(2^2) + 0*(2^3) = 2.
For n = 10, the starting value is not of the form 4k+3, after which follows A252463(10) = 5 (also not 4k+3), and then A252463(5) = 3 (which is), continuing as before as 3 -> 2 -> 1, thus a(10) = 0*(2^0) + + 0*(2^1) + 1*(2^2) + 0*(2^3) + 0*(2^4) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Reverse@ NestWhileList[Function[k, Which[k == 1, 1, EvenQ@ k, k/2, True, Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ k]], n, # > 1 &] /. k_ /; IntegerQ@ k :> If[Mod[k, 4] == 3, 1, 0], 2], {n, 84}] (* Michael De Vlieger, Sep 21 2017 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A292383(n) = if(1==n,0,(if(3==(n%4),1,0)+(2*A292383(A252463(n)))));
    
  • Scheme
    (define (A292383 n) (A292373 (A292384 n)))

Formula

a(1) = 0; for n > 1, a(n) = 2*a(A252463(n)) + [n ≡ 3 (mod 4)], where the last part of the formula is Iverson bracket, giving 1 only if n is of the form 4k+3, and 0 otherwise.
a(n) = A292373(A292384(n)).
a(n) = A292274(A243071(n)).
Other identities. For n >= 1:
a(2n) = 2*a(n).
a(n) + A292385(n) = A243071(n).
a(A163511(n)) = A292274(n).
A000120(a(n)) = A292377(n).

A292381 Base-2 expansion of a(n) encodes the steps where numbers of the form 4k+1 are encountered when map x -> A252463(x) is iterated down to 1, starting from x=n.

Original entry on oeis.org

1, 2, 4, 4, 9, 8, 18, 8, 9, 18, 36, 16, 73, 36, 16, 16, 147, 18, 294, 36, 37, 72, 588, 32, 19, 146, 16, 72, 1177, 32, 2354, 32, 73, 294, 32, 36, 4709, 588, 144, 72, 9419, 74, 18838, 144, 33, 1176, 37676, 64, 39, 38, 292, 292, 75353, 32, 74, 144, 589, 2354, 150706, 64, 301413, 4708, 72, 64, 147, 146, 602826, 588, 1177, 64, 1205652, 72, 2411305, 9418, 36, 1176
Offset: 1

Views

Author

Antti Karttunen, Sep 15 2017

Keywords

Examples

			For n = 1, the starting value (which is also the ending point) is of the form 4k+1, thus a(1) = 1*(2^0) = 1.
For n = 2, the starting value is not of the form 4k+1, but its parent, A252463(2) = 1 is, thus a(2) = 0*(2^0) + 1*(2^1) = 2.
For n = 3, the starting value is not of the form 4k+1, after which follows 2 (also not 4k+1), and then 2 -> 1, and it is only the end-point of iteration which is of the form 4k+1, thus a(3) = 0*(2^0) + 0*(2^1) + 1*(2^2) = 4.
For n = 5, the starting value is of the form 4k+1, after which follows A252463(5) = 3 (which is not), and then continuing as before as 3 -> 2 -> 1, thus a(5) = 1*(2^0) + 0*(2^1) + 0*(2^2) + 1*(2^3) = 9.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Reverse@ NestWhileList[Function[k, Which[k == 1, 1, EvenQ@ k, k/2, True, Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ k]], n, # > 1 &] /. k_ /; IntegerQ@ k :> If[Mod[k, 4] == 1, 1, 0], 2], {n, 76}] (* Michael De Vlieger, Sep 21 2017 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A292381(n) = if(1==n,n,(if(1==(n%4),1,0)+(2*A292381(A252463(n)))));
    
  • Python
    from sympy.core.cache import cacheit
    from sympy.ntheory.factor_ import digits
    from sympy import factorint, prevprime
    from operator import mul
    from functools import reduce
    def a292371(n):
        k=digits(n, 4)[1:]
        return 0 if n==0 else int("".join(['1' if i==1 else '0' for i in k]), 2)
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a252463(n): return 1 if n==1 else n//2 if n%2==0 else a064989(n)
    @cacheit
    def a292384(n): return 1 if n==1 else 4*a292384(a252463(n)) + n%4
    def a(n): return a292371(a292384(n))
    print([a(n) for n in range(1, 111)]) # Indranil Ghosh, Sep 21 2017
  • Scheme
    (define (A292381 n) (A292371 (A292384 n)))
    

Formula

a(1) = 1; for n > 1, a(n) = 2*a(A252463(n)) + [n ≡ 1 (mod 4)], where the last part of the formula is Iverson bracket, giving 1 only if n is of the form 4k+1, and 0 otherwise.
a(n) = A292371(A292384(n)).
Other identities. For n >= 1:
a(2n) = 2*a(n).
A000120(a(n)) = A292375(n).
For n >= 2, a(n) = A004754(A292385(n)).

A292272 a(n) = n - A048735(n) = n - (n AND floor(n/2)).

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 4, 4, 8, 9, 10, 10, 8, 9, 8, 8, 16, 17, 18, 18, 20, 21, 20, 20, 16, 17, 18, 18, 16, 17, 16, 16, 32, 33, 34, 34, 36, 37, 36, 36, 40, 41, 42, 42, 40, 41, 40, 40, 32, 33, 34, 34, 36, 37, 36, 36, 32, 33, 34, 34, 32, 33, 32, 32, 64, 65, 66, 66, 68, 69, 68, 68, 72, 73, 74, 74, 72, 73, 72, 72, 80, 81, 82, 82, 84, 85, 84, 84, 80, 81, 82, 82, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Sep 16 2017

Keywords

Comments

In binary expansion of n, change those 1's to 0's that have an 1-bit next to them at their left (more significant) side. Only fibbinary numbers (A003714) occur as terms.

Examples

			From _Kevin Ryde_, Jun 02 2020: (Start)
     n = 1831 = binary 11100100111
  a(n) = 1060 = binary 10000100100   high 1 of each run
(End)
		

Crossrefs

Programs

Formula

a(n) = n - A048735(n) = n - (n AND floor(n/2)) = n XOR (n AND floor(n/2)), where AND is bitwise-AND (A004198) and XOR is bitwise-XOR (A003987).
a(n) = n AND A003188(n).
a(n) = A292382(A005940(1+n)).
A059905(a(n)) = A292371(n).
For all n >= 0, A085357(a(n)) = 1.
a(n) = A213064(n) / 2. - Kevin Ryde, Jun 02 2020
a(n) = n AND NOT floor(n/2). - Chai Wah Wu, Jun 29 2022

A292380 Base-2 expansion of a(n) encodes the steps where multiples of 4 are encountered when map x -> A252463(x) is iterated down to 1, starting from x=n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 0, 1, 0, 0, 0, 7, 0, 4, 0, 1, 0, 0, 0, 3, 4, 0, 6, 1, 0, 0, 0, 15, 0, 0, 0, 9, 0, 0, 0, 3, 0, 0, 0, 1, 2, 0, 0, 7, 8, 8, 0, 1, 0, 12, 0, 3, 0, 0, 0, 1, 0, 0, 2, 31, 0, 0, 0, 1, 0, 0, 0, 19, 0, 0, 8, 1, 0, 0, 0, 7, 14, 0, 0, 1, 0, 0, 0, 3, 0, 4, 0, 1, 0, 0, 0, 15, 0, 16, 2, 17, 0, 0, 0, 3, 0
Offset: 1

Views

Author

Antti Karttunen, Sep 15 2017

Keywords

Examples

			For n = 4, the starting value is a multiple of four, after which follows A252463(4) = 2, and A252463(2) = 1, the end point of iteration, and neither 2 nor 1 is a multiple of four, thus a(4) = 1*(2^0) + 0*(2^1) + 0*(2^2) = 1.
For n = 8, the starting value is a multiple of four, after which follows A252463(8) = 4 (also a multiple), continuing as before as 4 -> 2 -> 1, thus a(8) = 1*(2^0) + 1*(2^1) + 0*(2^2) + 0*(2^3) = 3.
For n = 9, the starting value is not a multiple of four, after which follows A252463(9) = 4 (which is), continuing as before as 4 -> 2 -> 1, thus a(9) = 0*(2^0) + 1*(2^1) + 0*(2^2) + 0*(2^3) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Reverse@ NestWhileList[Function[k, Which[k == 1, 1, EvenQ@ k, k/2, True, Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ k]], n, # > 1 &] /. k_ /; IntegerQ@ k :> If[Mod[k, 4] == 0, 1, 0], 2], {n, 105}] (* Michael De Vlieger, Sep 21 2017 *)
  • PARI
    a(n) = my(m=factor(n),k=-1,ret=0); for(i=1,matsize(m)[1], ret += bitneg(0,m[i,2]-1) << (primepi(m[i,1])+k); k+=m[i,2]); ret; \\ Kevin Ryde, Dec 11 2020
  • Python
    from sympy.core.cache import cacheit
    from sympy.ntheory.factor_ import digits
    from sympy import factorint, prevprime
    from operator import mul
    from functools import reduce
    def a292370(n):
        k=digits(n, 4)[1:]
        return 0 if n==0 else int("".join(['1' if i==0 else '0' for i in k]), 2)
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a252463(n): return 1 if n==1 else n//2 if n%2==0 else a064989(n)
    @cacheit
    def a292384(n): return 1 if n==1 else 4*a292384(a252463(n)) + n%4
    def a(n): return a292370(a292384(n))
    print([a(n) for n in range(1, 111)]) # Indranil Ghosh, Sep 21 2017
    
  • Scheme
    (define (A292380 n) (A292370 (A292384 n)))
    

Formula

a(n) = A048735(A156552(n)).
a(n) = A292370(A292384(n)).
Other identities. For n >= 1:
a(n) AND A292382(n) = 0, where AND is a bitwise-AND (A004198).
a(n) + A292382(n) = A156552(n).
A000120(a(n)) + A000120(A292382(n)) = A001222(n).
A000035(a(n)) = A121262(n).

A292384 a(1) = 1; for n > 1, a(n) = 4*a(A252463(n)) + (n mod 4).

Original entry on oeis.org

1, 6, 27, 24, 109, 110, 439, 96, 97, 438, 1759, 440, 7037, 1758, 443, 384, 28149, 390, 112599, 1752, 1753, 7038, 450399, 1760, 389, 28150, 387, 7032, 1801597, 1774, 7206391, 1536, 7033, 112598, 1775, 1560, 28825565, 450398, 28155, 7008, 115302261, 7014, 461209047, 28152, 1761, 1801598, 1844836191, 7040, 1557, 1558, 112603, 112600
Offset: 1

Views

Author

Antti Karttunen, Sep 15 2017

Keywords

Comments

a(n) encodes in its base-4 representation the succession of modulo 4 residues obtained when map x -> A252463(x), starting from x=n, is iterated down to the eventual 1.

Crossrefs

Programs

  • Python
    from sympy.core.cache import cacheit
    from sympy import factorint, prevprime, prod
    def a064989(n):
        f = factorint(n)
        return 1 if n == 1 else prod(prevprime(i)**f[i] for i in f if i != 2)
    def a252463(n): return 1 if n==1 else n//2 if n%2==0 else a064989(n)
    @cacheit
    def a(n): return 1 if n==1 else 4*a(a252463(n)) + n%4
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Sep 21 2017

Formula

a(1) = 1; for n > 1, a(n) = 4*a(A252463(n)) + A010873(n).

A292586 a(n) = A002110(A001221(n)) = product of first omega(n) primes.

Original entry on oeis.org

1, 2, 2, 2, 2, 6, 2, 2, 2, 6, 2, 6, 2, 6, 6, 2, 2, 6, 2, 6, 6, 6, 2, 6, 2, 6, 2, 6, 2, 30, 2, 2, 6, 6, 6, 6, 2, 6, 6, 6, 2, 30, 2, 6, 6, 6, 2, 6, 2, 6, 6, 6, 2, 6, 6, 6, 6, 6, 2, 30, 2, 6, 6, 2, 6, 30, 2, 6, 6, 30, 2, 6, 2, 6, 6, 6, 6, 30, 2, 6, 2, 6, 2, 30, 6, 6, 6, 6, 2, 30, 6, 6, 6, 6, 6, 6, 2, 6, 6, 6, 2, 30, 2, 6, 30
Offset: 1

Views

Author

Antti Karttunen, Sep 25 2017

Keywords

Comments

The connection with binary tree A005940 is explained by the fact that on a trajectory from its root (1) to any number n, the numbers of the form 4k+2 will never occur consecutively (they are only born as right children of odd numbers, while all their right descendants from then onward are multiples of four). Thus all the runs are separate runs of length one, from which follows that A278222 when applied to A292382 yields only primorials. Moreover, the steps producing 4k+2 numbers are also only steps in A005940 that add new distinct prime factors to the generated number. Thus the total number of such steps is equal to the number of distinct prime factors of the eventual n. Hence A278222(A292382(n)) = A002110(A001221(n)).

Crossrefs

Cf. A083399 (restricted growth transform of this sequence).

Programs

Formula

a(n) = A002110(A001221(n)).
a(n) = A278222(A292382(n)).
For all n >= 1:
A001221(n) = A001221(a(n)) = A001222(a(n)) = A000120(A292382(n)).
Showing 1-7 of 7 results.