cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A292414 a(n) = [x^n] Product_{k>=1} (1 + 2^n*x^k).

Original entry on oeis.org

1, 2, 4, 72, 272, 2080, 270400, 2146432, 33751296, 403702272, 1103810790400, 17635156690944, 563431073648640, 13515197331283968, 360331952265379840, 37785849814204784082944, 1209091844251972299456512, 77374499118322174520328192, 3713890953695657990811811840
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[(1+2^n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
  • PARI
    {a(n)= polcoef(prod(k=1, n, (1+2^n*x^k +x*O(x^n))), n)};
    for(n=0,20, print1(a(n), ", ")) \\ G. C. Greubel, Feb 02 2019

Formula

Conjecture: log(a(n)) ~ sqrt(2)*log(2)*n^(3/2). - Vaclav Kotesovec, Aug 22 2018

A292416 a(n) = [x^n] Product_{k>=1} (1 + 2^n*x^k) / (1 - 2^n*x^k).

Original entry on oeis.org

1, 4, 40, 1296, 149024, 71573568, 141871849600, 1143771307901184, 37183988027710374400, 4854666820584582571623424, 2540262650941956832151944038400, 5322109355556594174041950822678401024, 44623279107562668799968801377926722975965184
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 16 2017

Keywords

Comments

Convolution of A292414 and A292415.

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[SeriesCoefficient[Product[(1+2^n*x^k)/(1-2^n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
  • PARI
    {a(n)= polcoef(prod(k=1, n, ((1+2^n*x^k)/(1-2^n*x^k) +x*O(x^n))), n)};
    for(n=0,20, print1(a(n), ", ")) \\ G. C. Greubel, Feb 02 2019

Formula

a(n) ~ 2^(n^2 + 1).
Showing 1-2 of 2 results.