cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292423 a(n) = 82*a(n-1) + a(n-2), where a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 82, 6725, 551532, 45232349, 3709604150, 304232772649, 24950796961368, 2046269583604825, 167819056652557018, 13763208915093280301, 1128750950094301541700, 92571341116647819699701, 7591978722515215516917182, 622634826587364320206908625
Offset: 0

Views

Author

Bobby Jacobs, Sep 18 2017

Keywords

Comments

Every fifth term of A000129 is divisible by 29. Dividing every fifth term by 29 gives this sequence.

Crossrefs

Cf. A000129.

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x/(1-82*x-x^2) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    a:= n-> (<<0|1>, <1|82>>^n)[1, 2]:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 18 2017
  • Mathematica
    CoefficientList[Series[x/(1-82*x-x^2), {x,0,20}], x] (* G. C. Greubel, Feb 02 2019 *)
    LinearRecurrence[{82,1},{0,1},20] (* Harvey P. Dale, Dec 20 2024 *)
  • PARI
    a(n) = ([82, 1; 1, 0]^n)[2, 1]; \\ Altug Alkan, Sep 18 2017
    
  • PARI
    concat(0, Vec(x / (1 - 82*x - x^2) + O(x^20))) \\ Colin Barker, Sep 20 2017
    
  • Sage
    (x/(1-82*x-x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 02 2019

Formula

a(n) = A000129(5*n)/29.
From Colin Barker, Sep 20 2017: (Start)
G.f.: x / (1 - 82*x - x^2).
a(n) = (((-41-29*sqrt(2))^(-n)*(-1 + (-3363-2378*sqrt(2))^n))) / (58*sqrt(2)).
(End)