A292423 a(n) = 82*a(n-1) + a(n-2), where a(0) = 0, a(1) = 1.
0, 1, 82, 6725, 551532, 45232349, 3709604150, 304232772649, 24950796961368, 2046269583604825, 167819056652557018, 13763208915093280301, 1128750950094301541700, 92571341116647819699701, 7591978722515215516917182, 622634826587364320206908625
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (82,1).
Crossrefs
Cf. A000129.
Programs
-
Magma
m:=20; R
:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x/(1-82*x-x^2) )); // G. C. Greubel, Feb 02 2019 -
Maple
a:= n-> (<<0|1>, <1|82>>^n)[1, 2]: seq(a(n), n=0..20); # Alois P. Heinz, Sep 18 2017
-
Mathematica
CoefficientList[Series[x/(1-82*x-x^2), {x,0,20}], x] (* G. C. Greubel, Feb 02 2019 *) LinearRecurrence[{82,1},{0,1},20] (* Harvey P. Dale, Dec 20 2024 *)
-
PARI
a(n) = ([82, 1; 1, 0]^n)[2, 1]; \\ Altug Alkan, Sep 18 2017
-
PARI
concat(0, Vec(x / (1 - 82*x - x^2) + O(x^20))) \\ Colin Barker, Sep 20 2017
-
Sage
(x/(1-82*x-x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 02 2019
Formula
a(n) = A000129(5*n)/29.
From Colin Barker, Sep 20 2017: (Start)
G.f.: x / (1 - 82*x - x^2).
a(n) = (((-41-29*sqrt(2))^(-n)*(-1 + (-3363-2378*sqrt(2))^n))) / (58*sqrt(2)).
(End)
Comments