A292555 Number of rooted unlabeled trees on n nodes where each node has at most 10 children.
1, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4765, 12483, 32964, 87785, 235305, 634628, 1720524, 4686842, 12820920, 35206475, 97010705, 268154003, 743351390, 2066090876, 5756490561, 16074597300, 44980514021, 126109353817, 354202275766, 996517941454
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Marko Riedel, Trees with bounded degree.
Crossrefs
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)* b(n-i*j, i-1, t-j, k), j=0..min(t, n/i)))) end: a:= n-> `if`(n=0, 1, b(n-1$2, 10$2)): seq(a(n), n=0..35); # Alois P. Heinz, Sep 20 2017
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]]]; a[n_] := If[n == 0, 1, b[n - 1, n - 1, 10, 10]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)
Formula
Functional equation of G.f. is T(z) = z + z*Sum_{q=1..10} Z(S_q)(T(z)) with Z(S_q) the cycle index of the symmetric group. Alternate FEQ is
T(z) = 1 + z*Z(S_10)(T(z)).
a(n) = Sum_{j=1..10} A244372(n,j) for n>0, a(0) = 1. - Alois P. Heinz, Sep 20 2017
a(n) / a(n+1) ~ 0.338329194566131211670667671160855741193081902868090986608524... - Robert A. Russell, Feb 11 2023