cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292558 a(n) is the smallest number k such that sigma(k) - 2k = 2^n.

Original entry on oeis.org

20, 12, 56, 550, 572, 108, 860, 952, 1232, 6328, 3708, 40540, 37072, 79288, 327260, 357112, 302000, 527296, 1764056, 6506512, 38559776, 21893248, 42257216, 167771740, 90798560, 469761208, 508198064, 490304800, 1353048560, 2951488480, 5067417200, 32648918272, 40086360272
Offset: 1

Views

Author

XU Pingya, Sep 19 2017

Keywords

Comments

For n > 31, a(n) > 1.724 * 10^10.
a(1) = A088831(1), a(2) = A088832(1), a(3) = A088833(1), a(4) = A141547(1), a(5) = A175989(1), a(6) = A275996(1), a(7) = A292626(1). - Max Alekseyev, Aug 27 2025

Examples

			sigma(20) - 2*20 = 2^1, a(1) = 20.
sigma(108) - 2*108 = 64 = 2^6, a(6) = 108.
		

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[Log[2, DivisorSigma[1, k] - 2k] != n, k++]; k, {n, 30}]
  • PARI
    a(n) = my(k=1); while(sigma(k) - 2*k != 2^n, k++); k; \\ Michel Marcus, Sep 19 2017

Extensions

Terms a(32) onward from Max Alekseyev, Aug 27 2025