A292561 Expansion of Product_{k>=1} (1 - mu(k)^2*x^k), where mu() is the Moebius function (A008683).
1, -1, -1, 0, 1, 0, -1, 1, 2, 0, -3, 0, 2, 0, -3, 0, 5, 0, -4, -2, 4, 0, -5, 0, 7, 3, -8, -1, 5, 1, -10, 0, 13, 2, -10, -3, 14, -2, -17, -3, 21, 5, -22, 0, 22, 4, -34, -5, 33, 9, -33, -10, 43, 6, -43, -19, 52, 16, -51, -13, 56, 24, -71, -20, 64, 26, -78, -24, 90, 24, -90, -39, 112, 26, -115, -37
Offset: 0
Links
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add(d* abs(mobius(d)), d=divisors(j)) *b(n-j), j=1..n)/n) end: a:= proc(n) option remember; `if`(n=0, 1, -add(b(n-i)*a(i), i=0..n-1)) end: seq(a(n), n=0..80); # Alois P. Heinz, Sep 20 2017
-
Mathematica
nmax = 75; CoefficientList[Series[Product[1 - MoebiusMu[k]^2 x^k, {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=1} (1 - x^A005117(k)).
Comments