cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292603 Doudna-tree reduced modulo 4: a(n) = A005940(1+n) mod 4.

Original entry on oeis.org

1, 2, 3, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 3, 2, 1, 0, 1, 2, 3, 0, 1, 2, 1, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 3, 2, 1, 0, 1, 2, 3, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 3, 2, 1, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Dec 01 2017

Keywords

Examples

			The first six levels of the binary tree (compare also to the illustrations given at A005940 and A292602):
                               1
                               |
                               2
                ............../ \..............
               3                               0
        ....../ \......                 ....../ \......
       1               2               1               0
      / \             / \             / \             / \
     /   \           /   \           /   \           /   \
    3     2         3     0         1     2         3     0
   / \   / \       / \   / \       / \   / \       / \   / \
  3   2 1   0     3   2 1   0     1   2 3   0     1   2 1   0
		

Crossrefs

Cf. A004767 (gives the positions of 0's), A016813 (of 2's).

Programs

Formula

a(n) = A010873(A005940(1+n)).
a(n) + 4*A292602(n) = A005940(1+n).
a(2n+1) = 2*a(n) mod 4.
a(A004767(n)) = 0.
a(A016813(n)) = 2.
a(2*A156552(A246261(n))) = 1.
a(2*A156552(A246263(n))) = 3.
a(n * 2^(1+A246271(A005940(1+n)))) = 1.