cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A371638 a(n) = 2*n + valuation(n, 3) with valuation(n, 3) = A007949(n).

Original entry on oeis.org

2, 4, 7, 8, 10, 13, 14, 16, 20, 20, 22, 25, 26, 28, 31, 32, 34, 38, 38, 40, 43, 44, 46, 49, 50, 52, 57, 56, 58, 61, 62, 64, 67, 68, 70, 74, 74, 76, 79, 80, 82, 85, 86, 88, 92, 92, 94, 97, 98, 100, 103, 104, 106, 111, 110, 112, 115, 116, 118, 121, 122, 124, 128, 128
Offset: 1

Views

Author

Peter Luschny, Mar 30 2024

Keywords

Comments

See A371639 for the connection with Voronoi's congruence.

Crossrefs

Cf. A007949, A371639, A292608 (c=2).

Programs

  • Maple
    A371638 := n -> 2*n + padic:-ordp(n, 3): seq(A371638(n), n = 1..64);
  • Mathematica
    Array[2 # + IntegerExponent[#, 3] &, 64] (* Michael De Vlieger, Mar 31 2024 *)
  • SageMath
    def A371638(n): return 2 * n + valuation(n, 3)
    print([A371638(n) for n in range(1, 65)])

Formula

a(n) = valuation(denominator(Voronoi(3, n))) where Voronoi(c, n) = ((c^n - 1) * bernoulli(n)) / (n * c^(n - 1)).

A255932 a(n) is the denominator of Gamma(n+1/2)^2/(2*n*Pi), the value of an integral with sinh in the denominator.

Original entry on oeis.org

8, 64, 128, 2048, 2048, 16384, 32768, 1048576, 524288, 4194304, 8388608, 134217728, 134217728, 1073741824, 2147483648, 137438953472, 34359738368, 274877906944, 549755813888, 8796093022208, 8796093022208, 70368744177664, 140737488355328
Offset: 1

Views

Author

Jean-François Alcover, Mar 11 2015

Keywords

Comments

Conjecture: a(n) <= 2^(3*n). - Vaclav Kotesovec, Mar 11 2015

Examples

			1/8, 9/64, 75/128, 11025/2048, 178605/2048, 36018675/16384, 2608781175/32768, ...
		

Crossrefs

Cf. A255931 (numerators), A292608.

Programs

  • Maple
    seq(2^A292608(n), n=1..23); # Peter Luschny, Sep 23 2017
  • Mathematica
    a[n_] := Gamma[n+1/2]^2/(2*n*Pi) // Denominator; Array[a, 30]
    Table[(2*n)!^2 / (n * 2^(4*n+1) * n!^2), {n, 1, 20}] // Denominator (* Vaclav Kotesovec, Mar 11 2015 *)
    b[n_] := 2*n + 1 + IntegerExponent[n,2]; Table[2^b[n], {n,1,23}] (* Peter Luschny, Sep 23 2017 *)

Formula

The n-th fraction also equals the n-th coefficient in the expansion of 2F1(1/2,1/2; 1; x) * n!*(n-1)!/2.
a(n) = 2^(2*n + 1 + valuation(n, 2)) = 2^A292608(n). - Peter Luschny, Sep 23 2017

A371639 a(n) = numerator(Voronoi(3, 2*n)) where Voronoi(c, n) = ((c^n - 1) * Bernoulli(n)) / (n * c^(n - 1)).

Original entry on oeis.org

2, -2, 26, -82, 1342, -100886, 1195742, -57242642, 31945440878, -276741323122, 26497552755742, -9169807783193206, 418093081574417342, -66910282127782482482, 37158050152167281792026, -2626016090388858294953362, 632184834985453539204543742, -1543534415494449734887808117378
Offset: 1

Views

Author

Peter Luschny, Mar 30 2024

Keywords

Comments

To begin with, we observe that if c = 2, then the numerator of Voronoi(2, 2*n) is the same as the numerator of Euler(2*n - 1, 1), which is equal to (-1)^n*A002425(n). Similarly, the denominator of Voronoi(2, 2*n) is A255932(n), which is equal to 2^A292608(n). The rational sequence r(n) = a(n) / A371640(n) examines the corresponding relationships in the case c = 3.
The function Voronoi, which is defined in the Name, was inspired by Voronoi's congruence. This congruence states that for any even integer k >= 2 and all positive coprime integers c, n: (c^k - 1)*N(k) == k*c^(k-1)*D(k)*Sum_{m=1..n-1} m^(k-1)* floor(m*c / n) mod n, where N(k) = numerator(Bernoulli(k)), D(k) = denominator( Bernoulli(k)) and gcd(N(k), D(k)) = 1.

Examples

			r(n) = 2/9, -2/81, 26/2187, -82/6561, 1342/59049, -100886/1594323, ...
		

References

  • Emma Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. Math. 39 (1938), 350-360.
  • Štefan Porubský, Further Congruences Involving Bernoulli Numbers, Journal of Number Theory 16, 87-94 (1983).
  • Georgy Feodosevich Voronyi, On Bernoulli numbers, Comm. Charkou Math. Sot. 2, 129-148 (1890) (in Russian).

Crossrefs

Cf. A371640 (denominator), A371638.

Programs

  • Maple
    Voronoi := (a, k) -> ((a^k - 1) * bernoulli(k)) / (k * a^(k - 1)):
    VoronoiList := (a, len) -> local k; [seq(Voronoi(a, 2*k), k = 1..len)]:
    numer(VoronoiList(3, 18));

Formula

a(n) = Voronoi(3, 2*n) * 3^(2*n + valuation(n, 3)).
Showing 1-3 of 3 results.