A349603
a(n) = Sum_{k=0..n} binomial(n,k) * A000108(k) * k^(n-k).
Original entry on oeis.org
1, 1, 4, 20, 126, 937, 7938, 74909, 775022, 8688827, 104608026, 1342844846, 18273663268, 262347913479, 3957524475778, 62511713866200, 1030842278673510, 17700339693712731, 315740112103311666, 5839137279831300536, 111749137533005481700, 2209538389126578658875
Offset: 0
-
Join[{1}, Table[Sum[Binomial[n, j]*CatalanNumber[j]*j^(n-j), {j, 0, n}], {n, 1, 25}]]
-
a(n) = sum(k=0, n, binomial(n,k)*(binomial(2*k,k)/(k+1))*k^(n-k)); \\ Michel Marcus, Nov 23 2021
A349640
a(n) = Sum_{k=0..n} binomial(n,k) * A000108(k) * k!.
Original entry on oeis.org
1, 2, 7, 46, 485, 7066, 130987, 2946182, 77923561, 2369742130, 81467904431, 3124302688222, 132237820201357, 6123150708289226, 307903794151741075, 16709463201832993846, 973385368533058021457, 60583668821975488285282, 4012342371757905842648791, 281735471040327667890013070
Offset: 0
-
gf := exp(x)*(1 - sqrt(1 - 4*x))/(2*x): ser := series(gf, x, 24):
seq(n!*coeff(ser, x, n), n = 0..19);
# Alternative:
a := n -> `if`(n < 4, [1, 2, 7, 46][n + 1], ((4*n^2 - 12*n + 8)*a(n - 3) - (8*n^2 - 13*n + 5)*a(n - 2) + 4*n^2*a(n - 1))/(n + 1)):
seq(a(n), n = 0..19); # Peter Luschny, Nov 23 2021
# Alternative
seq(simplify(hypergeom([-n, 1/2, 1], [2], -4)), n = 0..19); # Peter Bala, Mar 13 2025
-
Table[Sum[Binomial[n, j]*CatalanNumber[j]*j!, {j, 0, n}], {n, 0, 20}]
-
a(n) = sum(k=0, n, binomial(n,k) * (binomial(2*k,k)/(k+1)) * k!); \\ Michel Marcus, Nov 23 2021
A292631
a(n) = n! * [x^n] exp(n*x)*(BesselI(0,2*x) + BesselI(1,2*x)).
Original entry on oeis.org
1, 2, 10, 75, 758, 9660, 148772, 2688420, 55784710, 1307378358, 34158527852, 984547901051, 31034429035260, 1062081192039140, 39218355263626632, 1554260970293874135, 65803396940022289734, 2964120950479432183950, 141548149894016562758300, 7143010414313948156920665, 379821534884560034711455956
Offset: 0
-
Table[n!*SeriesCoefficient[E^(n*x)*(BesselI[0,2*x] + BesselI[1,2*x]),{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 20 2017 *)
A293491
a(n) = n! * [x^n] exp((n+2)*x)*BesselI(0,2*x).
Original entry on oeis.org
1, 3, 18, 155, 1734, 23877, 390804, 7417377, 160256070, 3885021569, 104465601756, 3086353547433, 99399100528924, 3466411543407555, 130151205663179112, 5235127829223881895, 224609180728848273990, 10239557195235638377449, 494317596005491398892620, 25192788307121307053168673
Offset: 0
-
Table[n! SeriesCoefficient[Exp[(n + 2) x] BesselI[0, 2 x], {x, 0, n}], {n, 0, 19}]
Table[SeriesCoefficient[1/Sqrt[(1 - n x) (1 - (n + 4) x)], {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[Sum[Binomial[n, k] Binomial[2 k, k] n^(n - k), {k, 0, n}], {n, 1, 19}]]
Table[(n + 2)^n HypergeometricPFQ[{1/2 - n/2, -n/2}, {1}, 4/(2 + n)^2], {n, 0, 19}]
A349639
a(n) = Sum_{k=0..n} binomial(n,k) * A000108(k) * k^k.
Original entry on oeis.org
1, 2, 11, 163, 4177, 150606, 7002679, 399296682, 26997867705, 2112814307980, 187919721166951, 18727570061711897, 2067435790679136937, 250474099952311886236, 33043529154916822685459, 4715582224589290429430011, 723854564711343436767660481, 118933484485939500023357177356
Offset: 0
-
Table[1+Sum[Binomial[n, j]*CatalanNumber[j]*j^j, {j, 1, n}], {n, 0, 20}]
-
a(n) = sum(k=0, n, binomial(n,k) * (binomial(2*k,k)/(k+1)) * k^k); \\ Michel Marcus, Nov 23 2021
Showing 1-5 of 5 results.
Comments