cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A131182 Table T(n,k) = n!*k^n, read by upwards antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 8, 3, 1, 0, 24, 48, 18, 4, 1, 0, 120, 384, 162, 32, 5, 1, 0, 720, 3840, 1944, 384, 50, 6, 1, 0, 5040, 46080, 29160, 6144, 750, 72, 7, 1, 0, 40320, 645120, 524880, 122880, 15000, 1296, 98, 8, 1, 0, 362880, 10321920, 11022480, 2949120, 375000, 31104, 2058, 128, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 25 2007

Keywords

Comments

For k>0, T(n,k) is the n-th moment of the exponential distribution with mean = k. - Geoffrey Critzer, Jan 06 2019
T(n,k) is the minimum value of Product_{i=1..n} Sum_{j=1..k} r_j[i] where each r_j is a permutation of {1..n}. For the maximum value, see A331988. - Chai Wah Wu, Sep 01 2022

Examples

			The (inverted) table begins:
k=0: 1, 0,   0,    0,      0,       0, ... (A000007)
k=1: 1, 1,   2,    6,     24,     120, ... (A000142)
k=2: 1, 2,   8,   48,    384,    3840, ... (A000165)
k=3: 1, 3,  18,  162,   1944,   29160, ... (A032031)
k=4: 1, 4,  32,  384,   6144,  122880, ... (A047053)
k=5: 1, 5,  50,  750,  15000,  375000, ... (A052562)
k=6: 1, 6,  72, 1296,  31104,  933120, ... (A047058)
k=7: 1, 7,  98, 2058,  57624, 2016840, ... (A051188)
k=8: 1, 8, 128, 3072,  98304, 3932160, ... (A051189)
k=9: 1, 9, 162, 4374, 157464, 7085880, ... (A051232)
Main diagonal is 1, 1, 8, 162, 6144, 375000, ... (A061711).
		

Crossrefs

Main diagonal gives A061711.

Programs

  • Maple
    T:= (n,k)-> n!*k^n:
    seq(seq(T(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Jan 06 2019
  • Python
    from math import factorial
    def A131182_T(n, k): # compute T(n, k)
        return factorial(n)*k**n # Chai Wah Wu, Sep 01 2022

Formula

From Ilya Gutkovskiy, Aug 11 2017: (Start)
G.f. of column k: 1/(1 - k*x/(1 - k*x/(1 - 2*k*x/(1 - 2*k*x/(1 - 3*k*x/(1 - 3*k*x/(1 - ...))))))), a continued fraction.
E.g.f. of column k: 1/(1 - k*x). (End)

A292784 a(n) = n! * [x^n] 1/sqrt(1 - 2*n*x).

Original entry on oeis.org

1, 1, 12, 405, 26880, 2953125, 484989120, 111289483305, 34007836262400, 13350287284158825, 6547290750000000000, 3922838769902739011325, 2819575386162274605465600, 2394486245934541921935898125, 2371947271643716575046318080000, 2710687260280640086154937744140625, 3539907755812512418187309922385920000
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2017

Keywords

Crossrefs

Main diagonal of A292783.

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/Sqrt[1 - 2 n x], {x, 0, n}], {n, 0, 16}]
    Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-i n x, 1, {i, 1, n}]), {x, 0, n}], {n, 0, 16}]
    Join[{1}, Table[n^n (2 n - 1)!!, {n, 1, 16}]]

Formula

a(n) = [x^n] 1/(1 - n*x/(1 - 2*n*x/(1 - 3*n*x/(1 - 4*n*x/(1 - 5*n*x/(1 - ...)))))), a continued fraction.
a(n) = A000312(n)*A001147(n).
Showing 1-2 of 2 results.