A103209
Square array T(n,d) read by antidiagonals: number of structurally-different guillotine partitions of a d-dimensional box in R^d by n hyperplanes.
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 22, 15, 4, 1, 90, 93, 28, 5, 1, 394, 645, 244, 45, 6, 1, 1806, 4791, 2380, 505, 66, 7, 1, 8558, 37275, 24868, 6345, 906, 91, 8, 1, 41586, 299865, 272188, 85405, 13926, 1477, 120, 9, 1, 206098, 2474025, 3080596, 1204245, 229326, 26845
Offset: 1
1,...1,....1,.....1,......1,......1,.......1,.......1,.......1,
1,...2,....3,.....4,......5,......6,.......7,.......8,.......9,
1,...6,...15,....28,.....45,.....66,......91,.....120,.....153,
1,..22,...93,...244,....505,....906,....1477,....2248,....3249,
1,..90,..645,..2380,...6345,..13926,...26845,...47160,...77265,
1,.394,.4791,.24868,..85405,.229326,..522739,.1059976,.1968633,
1,1806,37275,272188,1204245,3956106,10663471,24958200,52546473,
- E. Ackerman, G. Barequet, R. Y. Pinter and D. Romik, The number of guillotine partitions in d dimensions, Inf. Proc. Lett 98 (4) (2006) 162-167.
- Andrei Asinowski and Toufik Mansour, Separable d-Permutations and Guillotine Partitions, arXiv 0803.3414 [math.CO], 2008; Annals of Combinatorics 14 (1) pp.17-43 Springer, 2010; Abstract
- Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.6.
- Jean Cardinal, Stefan Felsner, Topological drawings of complete bipartite graphs, Journal of Computational Geometry 9.1 (2018), 213-246. Also arXiv:1608.08324 [cs.CG], 2016 (The OEIS is referenced in version v1 but not in v2).
-
T := (n,k) -> hypergeom([-n, n+1], [2], -k);
seq(print(seq(simplify(T(n, k)), k=0..9)), n=0..6); # Peter Luschny, May 23 2014
-
T[0, ] = T[, 0] = 1;
T[n_, k_] := Sum[Binomial[n+j, 2j] k^j CatalanNumber[j], {j, 0, n}];
Table[T[n-k+1, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018, after Paul Barry *)
A103212
a(n) = (1/n) * Sum_{i=0..n-1} C(n,i)*C(n,i+1)*(n-1)^i*n^(n-i) for n>=1, a(0)=1.
Original entry on oeis.org
1, 1, 6, 93, 2380, 85405, 3956106, 224939113, 15175702200, 1185580310121, 105302043709390, 10482085765658661, 1156062800841590148, 139945327558704629221, 18449221488652046992914, 2631255715262150125502865, 403689862107153669227378416, 66297391981691913179574751633
Offset: 0
-
Table[HypergeometricPFQ[{-n, n+1}, {2}, -n+1], {n, 0, 20}] (* Vaclav Kotesovec, Sep 24 2017 *)
Flatten[{1, 1, Table[Sum[Binomial[n, k]*Binomial[n, k+1]*(n-1)^k*n^(n-k), {k, 0, n-1}]/n, {n, 2, 20}]}] (* Vaclav Kotesovec, Sep 24 2017 *)
-
a(n) = {if(n==0, 1, sum(i=0, n-1, binomial(n,i)*binomial(n,i+1)*(n-1)^i*n^(n-i))/n)} \\ Andrew Howroyd, Apr 14 2021
A302286
a(n) = [x^n] 1/(1 - n*x - x/(1 - n*x - x/(1 - n*x - x/(1 - n*x - x/(1 - ...))))), a continued fraction.
Original entry on oeis.org
1, 2, 12, 116, 1530, 25422, 507696, 11814728, 313426350, 9324499610, 307171539576, 11091813369276, 435408606414964, 18453269887229478, 839464708754178240, 40786587211854543120, 2107367668847505288726, 115352793604678609311282, 6667002839420189781109800, 405656528458830256952396420
Offset: 0
-
Table[SeriesCoefficient[1/(1 - n x + ContinuedFractionK[-x, 1 - n x, {k, 1, n}]), {x, 0, n}], {n, 0, 19}]
Table[SeriesCoefficient[(1 - n x - Sqrt[1 - (2 n + 4) x + n^2 x^2])/(2 x), {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[(1/n) Sum[(n + 1)^k Binomial[n, k] Binomial[n, k - 1], {k, 0, n}], {n, 1, 19}]]
Table[(n + 1) Hypergeometric2F1[1 - n, -n, 2, n + 1], {n, 0, 19}]
A366038
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(n*(n+1),n-k) * n^k.
Original entry on oeis.org
1, 2, 25, 658, 27193, 1548526, 112916830, 10062563610, 1061196371665, 129369938790070, 17909387604206371, 2776290021986848588, 476539253976442601735, 89736215305419802692184, 18395742890606906720656524, 4078527943680251523126851306, 972490249766494185823234587681
Offset: 0
-
A366038 := proc(n)
add(binomial(n+k,k)*binomial(n*(n+1),n-k)*n^k,k=0..n) ;
%/(n+1) ;
end proc:
seq(A366038(n),n=0..80) ; # R. J. Mathar, Oct 24 2024
-
Unprotect[Power]; 0^0 = 1; Table[1/(n + 1) Sum[Binomial[n + k, k] Binomial[n (n + 1) , n - k] n^k, {k, 0, n}], {n, 0, 16}]
Table[Binomial[n (n + 1), n] Hypergeometric2F1[-n, n + 1, n^2 + 1, -n]/(n + 1), {n, 0, 16}]
Table[SeriesCoefficient[(1/x) InverseSeries[Series[x (1 - n x)/(1 + x)^n, {x, 0, n + 1}], x], {x, 0, n}], {n, 0, 16}]
A304936
a(n) = [x^n] 1/(1 - n*x/(1 - x - n*x/(1 - x - n*x/(1 - x - n*x/(1 - x - n*x/(1 - ...)))))), a continued fraction.
Original entry on oeis.org
1, 1, 10, 183, 5076, 191105, 9140118, 531731935, 36496595656, 2889768574449, 259443165181410, 26054614893427703, 2894791106297891100, 352618782117325104849, 46736101530152250554926, 6696645353339606889836415, 1031600569146491935984293648, 170029083604373881344301895585
Offset: 0
-
Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-n x, 1 - x, {i, 1, n}]), {x, 0, n}], {n, 0, 17}]
Table[SeriesCoefficient[2/(1 + x + Sqrt[1 - x (2 + 4 n - x)]), {x, 0, n}], {n, 0, 17}]
Table[Sum[(-1)^(n - k) (n + 1)^k Binomial[n, k] Binomial[n + k, k]/(k + 1),{k, 0, n}], {n, 0, 17}]
Table[(-1)^n Hypergeometric2F1[-n, n + 1, 2, n + 1], {n, 0, 17}]
Showing 1-5 of 5 results.
Comments