A107703
Sums of antidiagonals of number array A103209.
Original entry on oeis.org
1, 2, 4, 11, 43, 218, 1336, 9557, 78053, 714578, 7223548, 79704015, 951626175, 12210506762, 167413540912, 2440529176297, 37665520151241, 613124748803618, 10492684074110772, 188241358671950227, 3531254422923432083
Offset: 0
A107704
Diagonal sums of A103209, viewed as number triangle.
Original entry on oeis.org
1, 1, 2, 3, 8, 26, 107, 492, 2481, 13599, 81288, 531343, 3790344, 29279668, 242278645, 2125160800, 19608039385, 189437263949, 1912477987102, 20161911603747, 221869317899264, 2546362514225134, 30430660439311103
Offset: 0
A103210
a(n) = (1/n) * Sum_{i=0..n-1} C(n,i)*C(n,i+1)*2^i*3^(n-i), a(0)=1.
Original entry on oeis.org
1, 3, 15, 93, 645, 4791, 37275, 299865, 2474025, 20819307, 178003815, 1541918901, 13503125805, 119352115551, 1063366539315, 9539785668657, 86104685123025, 781343125570515, 7124072211203775, 65233526296899981, 599633539433039445, 5531156299278726663
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Joseph Abate and Ward Whitt, Integer Sequences from Queueing Theory, J. Int. Seq. 13 (2010), 10.5.5. b_n(2).
- Eyal Ackerman, Gill Barequet, Ron Y. Pinter, and Dan Romik, The number of guillotine partitions in d dimensions, Inf. Proc. Lett. (2006) Vol. 98, No. 4, 162-167.
- Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
- Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 58.
- Zhi Chen and Hao Pan, Identities involving weighted Catalan-Schroder and Motzkin Paths, arXiv:1608.02448 [math.CO], 2016, eq. (1.13), a=3, b=2.
- Robert Dickau, 3D Guillotine Partitions, figures for 3D slices.
- Samuele Giraudo, Operads from posets and Koszul duality, arXiv preprint arXiv:1504.04529 [math.CO], 2015.
- Samuele Giraudo, Pluriassociative algebras II: The polydendriform operad and related operads, arXiv:1603.01394 [math.CO], 2016.
- Luis Verde-Star, A Matrix Approach to Generalized Delannoy and Schröder Arrays, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.
-
R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!((1-x-Sqrt(x^2-10*x+1))/(4*x))); // G. C. Greubel, Feb 10 2018
-
A103210 := proc(n)
if n = 0 then
1;
else
add(binomial(n,i)*binomial(n,i+1)*2^i*3^(n-i),i=0..n-1)/n ;
end if;
end proc: # R. J. Mathar, Feb 10 2015
A103210_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 3*a[w-1] + 2*add(a[j]*a[w-j-1], j=1..w-1) od;
convert(a, list) end: A103210_list(21); # Peter Luschny, Feb 29 2016
-
CoefficientList[Series[(1-x-Sqrt[x^2-10*x+1])/(4*x), {x, 0, 25}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
A103210[n_]:= Hypergeometric2F1[-n, n+1, 2, -2]; Table[A103210[n], {n, 0, 25}] (* Peter Luschny, Jan 07 2018 *)
-
my(x='x+O('x^25)); Vec((1-x-sqrt(x^2-10*x+1))/(4*x)) \\ G. C. Greubel, Feb 10 2018
-
[1]+[(3^n/n)*sum( binomial(n,j)*binomial(n,j+1)*(2/3)^j for j in (0..n-1)) for n in (1..25)] # G. C. Greubel, Jun 08 2020
A103211
a(n) = (1/n) * Sum_{i=0..n-1} C(n,i)*C(n,i+1)*3^i*4^(n-i), a(0)=1.
Original entry on oeis.org
1, 4, 28, 244, 2380, 24868, 272188, 3080596, 35758828, 423373636, 5092965724, 62071299892, 764811509644, 9511373563492, 119231457692284, 1505021128450516, 19112961439180588, 244028820862442116, 3130592301487969948, 40333745806536135028, 521655330655122923980
Offset: 0
G.f. = 1 + 4*x + 28*x^2 + 244*x^3 + 2380*x^4 + 24868*x^5 + ... _Michael Somos_, Mar 15 2024
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J. Abate and W. Whitt, Integer Sequences from Queueing Theory, J. Int. Seq. 13 (2010), 10.5.5, b_n(3).
- E. Ackerman, G. Barequet, R. Y. Pinter and D. Romik, The number of guillotine partitions in d dimensions, Inf. Proc. Lett. 98 (4) (2006) 162-167
- Paul Barry, Embedding structures associated with Riordan arrays and moment matrices, arXiv preprint arXiv:1312.0583 [math.CO], 2013.
- Z. Chen and H. Pan, Identities involving weighted Catalan-Schroder and Motzkin Paths, arXiv:1608.02448 [math.CO], (2016), eq. (1.13), a=4, b=3.
- Samuele Giraudo, Operads from posets and Koszul duality, arXiv preprint arXiv:1504.04529 [math.CO], 2015.
- Samuele Giraudo, Pluriassociative algebras II: The polydendriform operad and related operads, arXiv:1603.01394 [math.CO], 2016.
- Djamila Oudrar, Sur l'énumération de structures discrètes, une approche par la théorie des relations, Thesis (in French), arXiv:1604.05839 [math.CO], 2016.
-
a:=n->(1/n)*Sum([0..n-1],i->Binomial(n,i)*Binomial(n,i+1)*
3^i*4^(n-i));;
A103211:=Concatenation([1],List([1..20],n->a(n))); # Muniru A Asiru, Feb 11 2018
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x-Sqrt(x^2-14*x+1))/(6*x))) // G. C. Greubel, Feb 10 2018
-
A103211_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := a[w-1] + 3*add(a[j]*a[w-j-1], j=0..w-1) od;
convert(a, list) end: A103211_list(20); # Peter Luschny, Feb 29 2016
-
CoefficientList[Series[(1-x-Sqrt[x^2-14*x+1])/(6*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
a[n_] := Sum[(-1)^(n - k) Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, 4], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Peter Luschny, Jan 08 2018 *)
a[ n_] := If[n < 0, a[-1-n], SeriesCoefficient[2/(1 - x + Sqrt[1 - 14*x + x^2]), {x, 0, n}]]; (* Michael Somos, Mar 15 2024 *)
-
x='x+O('x^30); Vec((1-x-sqrt(x^2-14*x+1))/(6*x)) \\ G. C. Greubel, Feb 10 2018
-
{a(n) = if(n<0, a(-1-n), polcoeff(2/(1 - x + sqrt(1 - 14*x + x^2 + x*O(x^n))), n))}; /* Michael Somos, Mar 15 2024 */
A133305
a(n) = (1/n)*Sum_{i=0..n-1} C(n,i)*C(n,i+1)*4^i*5^(n-i), a(0) = 1.
Original entry on oeis.org
1, 5, 45, 505, 6345, 85405, 1204245, 17558705, 262577745, 4005148405, 62070886845, 974612606505, 15471084667545, 247876665109005, 4003225107031845, 65101209768055905, 1065128963164067745, 17520376884067071205, 289572455530026439245, 4806489064223483202905
Offset: 0
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x-Sqrt(x^2-18*x+1))/(8*x))) // G. C. Greubel, Feb 10 2018
-
a[n_] := Hypergeometric2F1[-n, n + 1, 2, -4];
Table[a[n], {n, 0, 16}] (* Peter Luschny, Jan 08 2018 *)
CoefficientList[Series[(1-x-Sqrt[x^2-18*x+1])/(8*x), {x, 0, 50}], x] (* G. C. Greubel, Feb 10 2018 *)
-
x='x+O('x^30); Vec((1-x-sqrt(x^2-18*x+1))/(8*x)) \\ G. C. Greubel, Feb 10 2018
A133306
a(n) = (1/n)*Sum_{i=0..n-1} C(n,i)*C(n,i+1)*5^i*6^(n-i), a(0)=1.
Original entry on oeis.org
1, 6, 66, 906, 13926, 229326, 3956106, 70572066, 1291183806, 24095736726, 456879955026, 8776867331706, 170459895028566, 3341423256586206, 66023812564384026, 1313634856606430226, 26295597219228901806, 529199848207277494566, 10701116421278640683106, 217317899302044152030826
Offset: 0
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x-Sqrt(x^2-22*x+1))/(10*x))) // G. C. Greubel, Feb 10 2018
-
CoefficientList[Series[(1-x-Sqrt[x^2-22*x+1])/(10*x), {x,0,50}], x] (* G. C. Greubel, Feb 10 2018 *)
-
x='x+O('x^30); Vec((1-x-sqrt(x^2-22*x+1))/(10*x)) \\ G. C. Greubel, Feb 10 2018
A133307
a(n) = (1/n)*Sum_{i=0..n-1} C(n,i)*C(n,i+1)*6^i*7^(n-i), a(0)=1.
Original entry on oeis.org
1, 7, 91, 1477, 26845, 522739, 10663471, 224939113, 4866571801, 107393779423, 2407939176643, 54700070934061, 1256249370578293, 29119953189833611, 680401905145643863, 16008309928027493713, 378930780842531820721, 9017843351806985482423, 215634517504141993966891
Offset: 0
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x-Sqrt(x^2-26*x+1))/(12*x))) // G. C. Greubel, Feb 10 2018
-
a := n -> hypergeom([-n, n+1], [2], -6);
seq(round(evalf(a(n),32)),n=0..16); # Peter Luschny, May 23 2014
-
CoefficientList[Series[(1-x-Sqrt[x^2-26*x+1])/(12*x), {x,0,50}], x] (* G. C. Greubel, Feb 10 2018 *)
-
x='x+O('x^30); Vec((1-x-sqrt(x^2-26*x+1))/(12*x)) \\ G. C. Greubel, Feb 10 2018
A133308
a(n) = (1/n)*Sum_{i=0..n-1} C(n,i)*C(n,i+1)*7^i*8^(n-i), a(0)=1.
Original entry on oeis.org
1, 8, 120, 2248, 47160, 1059976, 24958200, 607693640, 15175702200, 386555020552, 10004252294520, 262321706465736, 6953918939056440, 186059575955360136, 5018045415643478520, 136276936332343342152, 3723442515218861494200, 102281105054908404972040
Offset: 0
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x-Sqrt(x^2-30*x+1))/(14*x))) // G. C. Greubel, Feb 10 2018
-
a := n -> hypergeom([-n, n+1], [2], -7);
seq(round(evalf(a(n), 32)), n=0..15); # Peter Luschny, May 23 2014
-
CoefficientList[Series[(1-x-Sqrt[x^2-30*x+1])/(14*x), {x,0,50}], x] (* G. C. Greubel, Feb 10 2018 *)
-
x='x+O('x^30); Vec((1-x-sqrt(x^2-30*x+1))/(14*x)) \\ G. C. Greubel, Feb 10 2018
A133309
a(n) = (1/n)*Sum_{i=0..n-1} C(n,i)*C(n,i+1)*8^i*9^(n-i), a(0)=1.
Original entry on oeis.org
1, 9, 153, 3249, 77265, 1968633, 52546473, 1450365921, 41058670113, 1185580310121, 34783088255289, 1033907690362257, 31070005849929969, 942384250116160857, 28812102048874578249, 887007207177728561601, 27473495809057571051073, 855518113376312857290441
Offset: 0
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!( (1-x-Sqrt(x^2-34*x+1))/16 )); // G. C. Greubel, Feb 10 2018
-
Rest@ CoefficientList[ Series[(1-x-Sqrt[x^2-34*x+1])/16, {x, 0, 18}], x] (* Robert G. Wilson v, Oct 19 2007 *)
Table[-((3 I LegendreP[n, -1, 2, 17])/(2 Sqrt[2])), {n, 0, 20}] (* Vaclav Kotesovec, Aug 13 2013 *)
-
my(x='x+O('x^30)); Vec((1-x-sqrt(x^2-34*x+1))/16) \\ G. C. Greubel, Feb 10 2018
A292798
a(n) = [x^n] 1/(1 - x - n*x/(1 - x - n*x/(1 - x - n*x/(1 - x - n*x/(1 - x - n*x/(1 - ...)))))), a continued fraction.
Original entry on oeis.org
1, 2, 15, 244, 6345, 229326, 10663471, 607693640, 41058670113, 3210853971610, 285387481699551, 28423216247375676, 3136023698489382025, 379743303818657805222, 50074394496591697023135, 7143088376895580682492176, 1096075604718147681983312001, 180030794404631168482202007090
Offset: 0
Main diagonal of
A103209 (with offset 0).
-
Table[SeriesCoefficient[1/(1 - x + ContinuedFractionK[-n x, 1 - x, {i, 1, n}]), {x, 0, n}], {n, 0, 17}]
Table[SeriesCoefficient[(1 - x + Sqrt[1 - 2 (2 n + 1) x + x^2])/(1 - 2 (n + 1) x + x^2 - (x - 1) Sqrt[1 - 2 (2 n + 1) x + x^2]), {x, 0, n}], {n, 0, 17}]
Table[Hypergeometric2F1[-n, n + 1, 2, -n], {n, 0, 17}]
-
{a(n) = polcoeff( (1+x)^(n+1) / (1 - n*x +x*O(x^n) )^(n+1), n) / (n+1)}
for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, May 07 2018
Showing 1-10 of 13 results.
Comments