cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A292804 Number A(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 2, 0, 1, 4, 12, 16, 2, 0, 1, 5, 22, 55, 42, 3, 0, 1, 6, 35, 132, 225, 116, 4, 0, 1, 7, 51, 260, 729, 927, 310, 5, 0, 1, 8, 70, 452, 1805, 4000, 3729, 816, 6, 0, 1, 9, 92, 721, 3777, 12376, 21488, 14787, 2121, 8, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 23 2017

Keywords

Examples

			A(2,2) = 5: {aa}, {ab}, {ba}, {bb}, {a,b}.
Square array A(n,k) begins:
  1, 1,   1,     1,      1,      1,       1,       1, ...
  0, 1,   2,     3,      4,      5,       6,       7, ...
  0, 1,   5,    12,     22,     35,      51,      70, ...
  0, 2,  16,    55,    132,    260,     452,     721, ...
  0, 2,  42,   225,    729,   1805,    3777,    7042, ...
  0, 3, 116,   927,   4000,  12376,   31074,   67592, ...
  0, 4, 310,  3729,  21488,  83175,  250735,  636517, ...
  0, 5, 816, 14787, 113760, 550775, 1993176, 5904746, ...
		

Crossrefs

Rows n=0-2 give: A000012, A001477, A000326.
Main diagonal gives A292805.

Programs

  • Maple
    h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))
        end:
    A:= (n, k)-> h(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    h[n_, i_, k_] := h[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[h[n-i*j, i-1, k]* Binomial[k^i, j], {j, 0, n/i}]]];
    A[n_, k_] := h[n, n, k];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)

Formula

G.f. of column k: Product_{j>=1} (1+x^j)^(k^j).
A(n,k) = Sum_{i=0..k} C(k,i) * A319501(n,i).

A343365 Expansion of Product_{k>=1} (1 + x^k)^(8^(k-1)).

Original entry on oeis.org

1, 1, 8, 72, 604, 5148, 43544, 368408, 3112262, 26273542, 221605240, 1867736120, 15730022540, 132385106956, 1113413229000, 9358220560136, 78606905495809, 659886123312449, 5536404584185376, 46424396382193376, 389074608184431328, 3259085506224931424, 27286163457927575200
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 12 2021

Keywords

Crossrefs

Programs

  • Maple
    h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(h(n-i*j, i-1)*binomial(8^(i-1), j), j=0..n/i)))
        end:
    a:= n-> h(n$2):
    seq(a(n), n=0..22);  # Alois P. Heinz, Apr 12 2021
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[(1 + x^k)^(8^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 8^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 22}]
  • PARI
    seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(8^(k-1))))} \\ Andrew Howroyd, Apr 12 2021

Formula

a(n) ~ exp(sqrt(n/2) - 1/16 - c/8) * 2^(3*n - 7/4) / (sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (8^(j-1) - 1)). - Vaclav Kotesovec, Apr 13 2021
Showing 1-2 of 2 results.