cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292870 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of k-th power of continued fraction 1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 5, 0, 1, 4, 9, 14, 15, 0, 1, 5, 14, 28, 44, 52, 0, 1, 6, 20, 48, 93, 154, 203, 0, 1, 7, 27, 75, 169, 333, 595, 877, 0, 1, 8, 35, 110, 280, 624, 1289, 2518, 4140, 0, 1, 9, 44, 154, 435, 1071, 2442, 5394, 11591, 21147, 0, 1, 10, 54, 208, 644, 1728, 4265, 10188, 24366, 57672, 115975, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2017

Keywords

Comments

A(n,k) is the n-th term of the k-fold convolution of Bell numbers with themselves. - Alois P. Heinz, Feb 12 2019

Examples

			G.f. of column k: A_k(x) = 1 + k*x + k*(k + 3)*x^2/2 + k*(k^2 + 9*k + 20)*x^3/6 + k*(k^3 + 18*k^2 + 107*k + 234)*x^4/24 + k*(k^4 + 30*k^3 + 335*k^2 + 1770*k + 4104)*x^5/120 + ...
Square array begins:
  1,   1,    1,    1,    1,     1,  ...
  0,   1,    2,    3,    4,     5,  ...
  0,   2,    5,    9,   14,    20,  ...
  0,   5,   14,   28,   48,    75,  ...
  0,  15,   44,   93,  169,   280,  ...
  0,  52,  154,  333,  624,  1071,  ...
		

Crossrefs

Columns k=0-4 give A000007, A000110, A014322, A014323, A014325.
Rows n=0-3 give A000012, A001477, A000096, A005586.
Antidiagonal sums give A137551.
Main diagonal gives A292871.
Cf. A205574 (another version).

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
         `if`(k=1, add(A(n-j, k)*binomial(n-1, j-1), j=1..n),
         (h-> add(A(j, h)*A(n-j, k-h), j=0..n))(iquo(k,2)))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, May 31 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 - x + ContinuedFractionK[-i x^2, 1 - (i + 1) x, {i, 1, n}])^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))))^k, a continued fraction.