A014322 Convolution of Bell numbers with themselves.
1, 2, 5, 14, 44, 154, 595, 2518, 11591, 57672, 308368, 1762500, 10716321, 69011130, 468856113, 3348695194, 25064539520, 196052415230, 1598543907843, 13556379105766, 119332020447219, 1088376385244908, 10268343703117892, 100063762955374568, 1005822726810785809
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
- Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv preprint arXiv:1203.3786 [math.CO], 2012. - From _N. J. A. Sloane_, Sep 17 2012
Programs
-
Magma
A014322:= func< n | (&+[Bell(j)*Bell(n-j): j in [0..n]]) >; [A014322(n): n in [0..40]]; // G. C. Greubel, Jan 08 2023
-
Maple
with(combinat): a:= n-> add(bell(i)*bell(n-i), i=0..n): seq(a(n), n=0..30); # Alois P. Heinz, May 13 2014
-
Mathematica
a[n_]:= Sum[BellB[k]*BellB[n-k], {k,0,n}]; Table[a[n], {n,0,30}] (* Jean-François Alcover, Jan 17 2016 *)
-
SageMath
def A014322(n): return sum(bell_number(j)*bell_number(n-j) for j in range(n+1)) [A014322(n) for n in range(41)] # G. C. Greubel, Jan 08 2023
Formula
G.f.: (1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))))^2, a continued fraction. - Ilya Gutkovskiy, Sep 25 2017
G.f.: ( Sum_{j>=0} A000110(j)*x^j )^2. - G. C. Greubel, Jan 08 2023
Comments