cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A160701 Duplicate of A137551.

Original entry on oeis.org

1, 2, 5, 14, 43, 144, 525, 2084, 9005, 42288, 215111, 1179738, 6937765, 43504598, 289356385, 2031636826, 14995775647, 115943399636, 936138957225, 7872233481696, 68788474572625, 623323010473012, 5846701373312019
Offset: 0

Views

Author

Gary W. Adamson, May 24 2009

Keywords

A292870 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of k-th power of continued fraction 1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 5, 0, 1, 4, 9, 14, 15, 0, 1, 5, 14, 28, 44, 52, 0, 1, 6, 20, 48, 93, 154, 203, 0, 1, 7, 27, 75, 169, 333, 595, 877, 0, 1, 8, 35, 110, 280, 624, 1289, 2518, 4140, 0, 1, 9, 44, 154, 435, 1071, 2442, 5394, 11591, 21147, 0, 1, 10, 54, 208, 644, 1728, 4265, 10188, 24366, 57672, 115975, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2017

Keywords

Comments

A(n,k) is the n-th term of the k-fold convolution of Bell numbers with themselves. - Alois P. Heinz, Feb 12 2019

Examples

			G.f. of column k: A_k(x) = 1 + k*x + k*(k + 3)*x^2/2 + k*(k^2 + 9*k + 20)*x^3/6 + k*(k^3 + 18*k^2 + 107*k + 234)*x^4/24 + k*(k^4 + 30*k^3 + 335*k^2 + 1770*k + 4104)*x^5/120 + ...
Square array begins:
  1,   1,    1,    1,    1,     1,  ...
  0,   1,    2,    3,    4,     5,  ...
  0,   2,    5,    9,   14,    20,  ...
  0,   5,   14,   28,   48,    75,  ...
  0,  15,   44,   93,  169,   280,  ...
  0,  52,  154,  333,  624,  1071,  ...
		

Crossrefs

Columns k=0-4 give A000007, A000110, A014322, A014323, A014325.
Rows n=0-3 give A000012, A001477, A000096, A005586.
Antidiagonal sums give A137551.
Main diagonal gives A292871.
Cf. A205574 (another version).

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
         `if`(k=1, add(A(n-j, k)*binomial(n-1, j-1), j=1..n),
         (h-> add(A(j, h)*A(n-j, k-h), j=0..n))(iquo(k,2)))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, May 31 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 - x + ContinuedFractionK[-i x^2, 1 - (i + 1) x, {i, 1, n}])^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))))^k, a continued fraction.

A205574 Triangle T(n,k), 0<=k<=n, given by (0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 15, 14, 9, 4, 1, 0, 52, 44, 28, 14, 5, 1, 0, 203, 154, 93, 48, 20, 6, 1, 0, 877, 595, 333, 169, 75, 27, 7, 1, 0, 4140, 2518, 1289, 624, 280, 110, 35, 8, 1, 0, 21147, 11591, 5394, 2442, 1071, 435, 154, 44, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 29 2012

Keywords

Comments

Bell convolution triangle ; g.f. for column k : (x*B(x))^k with B(x) g.f. for A000110 (Bell numbers).
Riordan array (1, x*B(x)), when B(x) the g.f. of A000110.
Row sums are in A137551.

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,  1;
  0,   5,   5,  3,  1;
  0,  15,  14,  9,  4,  1;
  0,  52,  44, 28, 14,  5, 1;
  0, 203, 154, 93, 48, 20, 6, 1;
  ...
		

Crossrefs

Cf. Columns : A000007, A000110, A014322, A014323, A014325 ; Diagonals : A000012, A001477, A000096, A005586.
Another version: A292870.
T(2n,n) gives: A292871.

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> combinat:-bell(n-1)); # Peter Luschny, Oct 19 2022

Formula

Sum_{k=0..n} T(n,k) = A137551(n), n>0.

A129247 Invert transform of the Bell numbers.

Original entry on oeis.org

1, 1, 3, 10, 36, 138, 560, 2402, 10898, 52392, 267394, 1450790, 8371220, 51327178, 333759746, 2295276480, 16639104002, 126718172670, 1010487248556, 8411744415418, 72899055533482, 656136245454232, 6120474697035762
Offset: 0

Views

Author

Thomas Wieder, May 10 2008

Keywords

Comments

The following definition of the invert transform appears in [M. Bernstein & N. J. A. Sloane, Some canonical sequences of integers, Linear Algebra and its Applications, 226-228 (1995), 57-72]: "b_n is the number of ordered arrangements of postage stamps of total value n that can be formed if we have a_i types of stamps of value i, i >= 1."
Hankel transform is A000178. - Paul Barry, Jan 08 2009
Equals INVERT transform of the Bell sequence starting with offset 1: (1, 2, 5, ...), while A137551 = INVERT transform of the Bell sequence starting with offset 0: (1, 1, 2, 5, 15, 52, ...). - Gary W. Adamson, May 24 2009

Examples

			We have Bell(i) types of an integer i with i=1,2,...,n, where Bell(i) is the i-th Bell number.
We write i_j for integer i of type j.
a(2)=3 because of the 3 ordered arrangements
  {1_1,1_1}
  {2_1}, {2_2}.
a(3)=10 because of the 10 ordered arrangements
  {1_1,1_1,1_1},
  {1_1,2_1}, {2_1,1_1},
  {1_1,2_2}, {2_2,1_1}
  {3_1}, {3_2}, {3_3}, {3_4}, {3_5}.
		

Crossrefs

Programs

  • Maple
    A129247 := proc(n) option remember ; local i ; if n <= 1 then 1 ; else add(combinat[bell](i)*procname(n-i),i=1..n) ; fi ; end: for n from 0 to 40 do printf("%d,",A129247(n)) ; od: # R. J. Mathar, Aug 25 2008
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[BellB[i]*a[n - i], {i, 1, n}];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 09 2017 *)

Formula

a(n) = Sum_{i=1..n} Bell(i)*a(n-i).
G.f.: 1/(U(0) - 2*x) where U(k) = 1 - x*(k+1)/(1 - x/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Nov 12 2012
G.f.: 1/( Q(0) - 2*x ) where Q(k) = 1 + x/(x*k - 1 )/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Feb 23 2013
G.f.: 1/(Q(0) - x), where Q(k) = 1 - x - x/(1 - x*(2*k+1)/(1 - x - x/(1 - 2*x*(k+1)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, May 12 2013

Extensions

Extended by R. J. Mathar, Aug 25 2008
a(0)=1 prepended by Alois P. Heinz, Sep 22 2017

A335849 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Bell(k-1) * a(n-k).

Original entry on oeis.org

1, 1, 3, 14, 87, 675, 6282, 68201, 846183, 11811048, 183176577, 3124958179, 58157682072, 1172551946395, 25459025908899, 592263131497942, 14696581853565723, 387477880784385143, 10816856730117090114, 318739828787430822853, 9886623306152849028771
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 26 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] BellB[k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[Exp[1]/(Exp[1] + ExpIntegralEi[1] - ExpIntegralEi[Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp(1) / (exp(1) + Ei(1) - Ei(exp(x))), where Ei() is the exponential integral.
Showing 1-5 of 5 results.