cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A342111 a(n) = (-1)^n * Sum_{k=0..n} Stirling1(n,k) * Stirling1(n,n-k).

Original entry on oeis.org

1, 0, 1, 12, 193, 3980, 100805, 3034920, 105994833, 4215106728, 188097696345, 9309515255700, 506149663220641, 29989851619249236, 1923467938147053389, 132771455705186298000, 9814431285244231295265, 773520674985391641371280, 64752473306596841023424945
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2021

Keywords

Crossrefs

Programs

  • Magma
    [(&+[(-1)^n*StirlingFirst(n, k)*StirlingFirst(n, n-k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 03 2021
    
  • Mathematica
    Table[(-1)^n*Sum[StirlingS1[n, k]*StirlingS1[n, n-k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = (-1)^n*sum(k=0, n, stirling(n, k, 1)*stirling(n, n-k, 1)); \\ Michel Marcus, Feb 28 2021
    
  • Sage
    [sum( stirling_number1(n, k)*stirling_number1(n, n-k) for k in (0..n) ) for n in (0..30)] # G. C. Greubel, Jun 03 2021

Formula

a(n) ~ c * d^n * (n-1)!, where
d = A238261 = -(2*LambertW(-1,-exp(-1/2)/2))^2 / (1 + 2*LambertW(-1,-exp(-1/2)/2)) = 4.9108149645682558987515348052403521978987052817678471761394112...
c = 1/(4*sqrt(-LambertW(-1, -exp(-1/2)/2)) * sqrt(-1 - LambertW(-1, -exp(-1/2)/2))*Pi) = 0.06903826111269387517867145566264007373042059749428879149076344304196548... - Vaclav Kotesovec, Feb 28 2021, updated May 14 2025
a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)^2. - Seiichi Manyama, May 13 2025

A292870 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of k-th power of continued fraction 1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 5, 0, 1, 4, 9, 14, 15, 0, 1, 5, 14, 28, 44, 52, 0, 1, 6, 20, 48, 93, 154, 203, 0, 1, 7, 27, 75, 169, 333, 595, 877, 0, 1, 8, 35, 110, 280, 624, 1289, 2518, 4140, 0, 1, 9, 44, 154, 435, 1071, 2442, 5394, 11591, 21147, 0, 1, 10, 54, 208, 644, 1728, 4265, 10188, 24366, 57672, 115975, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2017

Keywords

Comments

A(n,k) is the n-th term of the k-fold convolution of Bell numbers with themselves. - Alois P. Heinz, Feb 12 2019

Examples

			G.f. of column k: A_k(x) = 1 + k*x + k*(k + 3)*x^2/2 + k*(k^2 + 9*k + 20)*x^3/6 + k*(k^3 + 18*k^2 + 107*k + 234)*x^4/24 + k*(k^4 + 30*k^3 + 335*k^2 + 1770*k + 4104)*x^5/120 + ...
Square array begins:
  1,   1,    1,    1,    1,     1,  ...
  0,   1,    2,    3,    4,     5,  ...
  0,   2,    5,    9,   14,    20,  ...
  0,   5,   14,   28,   48,    75,  ...
  0,  15,   44,   93,  169,   280,  ...
  0,  52,  154,  333,  624,  1071,  ...
		

Crossrefs

Columns k=0-4 give A000007, A000110, A014322, A014323, A014325.
Rows n=0-3 give A000012, A001477, A000096, A005586.
Antidiagonal sums give A137551.
Main diagonal gives A292871.
Cf. A205574 (another version).

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
         `if`(k=1, add(A(n-j, k)*binomial(n-1, j-1), j=1..n),
         (h-> add(A(j, h)*A(n-j, k-h), j=0..n))(iquo(k,2)))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, May 31 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 - x + ContinuedFractionK[-i x^2, 1 - (i + 1) x, {i, 1, n}])^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))))^k, a continued fraction.

A014323 Three-fold convolution of Bell numbers with themselves.

Original entry on oeis.org

1, 3, 9, 28, 93, 333, 1289, 5394, 24366, 118526, 618924, 3456942, 20573391, 129951231, 867877107, 6106194478, 45109290477, 348836705235, 2816093142803, 23673989688810, 206794355179656, 1873232870155036, 17565534522745008, 170237112831874188
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=3 of A292870.

Programs

Formula

G.f.: (1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))))^3, a continued fraction. - Ilya Gutkovskiy, Sep 25 2017
From G. C. Greubel, Jan 08 2023: (Start)
a(n) = Sum_{j=0..n} A000110(j)*A014322(n-j).
G.f.: ( Sum_{j>=0} A000110(j)*x^j )^3. (End)

A014325 Four-fold convolution of Bell numbers with themselves.

Original entry on oeis.org

1, 4, 14, 48, 169, 624, 2442, 10188, 45452, 217100, 1109914, 6064584, 35330715, 218788432, 1435302930, 9940062428, 72422364227, 553338786504, 4420324121772, 36820875272488, 319053830821880, 2869645346679368, 26739383194844404, 257682847299543248
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=4 of A292870.

Programs

Formula

G.f.: (1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))))^4, a continued fraction. - Ilya Gutkovskiy, Sep 25 2017
G.f.: ( Sum_{j>=0} A000110(j)*x^j )^4. - G. C. Greubel, Jan 08 2023

A205574 Triangle T(n,k), 0<=k<=n, given by (0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 15, 14, 9, 4, 1, 0, 52, 44, 28, 14, 5, 1, 0, 203, 154, 93, 48, 20, 6, 1, 0, 877, 595, 333, 169, 75, 27, 7, 1, 0, 4140, 2518, 1289, 624, 280, 110, 35, 8, 1, 0, 21147, 11591, 5394, 2442, 1071, 435, 154, 44, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 29 2012

Keywords

Comments

Bell convolution triangle ; g.f. for column k : (x*B(x))^k with B(x) g.f. for A000110 (Bell numbers).
Riordan array (1, x*B(x)), when B(x) the g.f. of A000110.
Row sums are in A137551.

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,  1;
  0,   5,   5,  3,  1;
  0,  15,  14,  9,  4,  1;
  0,  52,  44, 28, 14,  5, 1;
  0, 203, 154, 93, 48, 20, 6, 1;
  ...
		

Crossrefs

Cf. Columns : A000007, A000110, A014322, A014323, A014325 ; Diagonals : A000012, A001477, A000096, A005586.
Another version: A292870.
T(2n,n) gives: A292871.

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> combinat:-bell(n-1)); # Peter Luschny, Oct 19 2022

Formula

Sum_{k=0..n} T(n,k) = A137551(n), n>0.

A342110 a(n) = Sum_{k=0..n} Stirling2(n,k) * Stirling2(n,n-k).

Original entry on oeis.org

1, 0, 1, 6, 61, 770, 12160, 228382, 4989621, 124262532, 3475892685, 107901412520, 3681266754660, 136918473752216, 5513911474915116, 239034083286873630, 11098790133822288645, 549539910028075555016, 28903562131933534643851, 1609321474965547356327246
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2021

Keywords

Crossrefs

Programs

  • Magma
    [(&+[StirlingSecond(n, k)*StirlingSecond(n, n-k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 03 2021
    
  • Mathematica
    Table[Sum[StirlingS2[n, k]*StirlingS2[n, n-k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 2)*stirling(n, n-k, 2)); \\ Michel Marcus, Feb 28 2021
    
  • Sage
    [sum( stirling_number2(n, k)*stirling_number2(n, n-k) for k in (0..n) ) for n in (0..30)] # G. C. Greubel, Jun 03 2021

Formula

From Vaclav Kotesovec, Feb 28 2021, updated May 25 2025: (Start)
a(n) ~ c * d^n * (n-1)!, where
d = A238258 = -2 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 3.0882773047417401791158400820254382768364448971420138767247...
c = 1/(2*Pi*sqrt((1 + LambertW(-2*exp(-2)))*(3 + LambertW(-2*exp(-2))))) = 0.12826577250734152801558828593238744179869387423941684693208180123477... (End)

A144155 Bell convolution triangle, T(n,k) = A000110(n-k)*A000110(k).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 5, 2, 2, 5, 15, 5, 4, 5, 15, 52, 15, 10, 10, 15, 52, 203, 52, 30, 25, 30, 52, 203, 877, 203, 104, 75, 75, 104, 203, 877, 4140, 877, 406, 260, 225, 260, 406, 877, 4140, 21147, 4140, 1754, 1015, 780, 780, 1015, 1754, 4140, 21147
Offset: 0

Views

Author

Gary W. Adamson, Sep 12 2008

Keywords

Comments

Row sums = A014322: (1, 2, 5, 14, 44, 154,...) the Bell numbers convolved with themselves.

Examples

			First few rows of the triangle =
1;
1, 1;
2, 1, 2;
5, 2, 2, 5;
15, 5, 4, 5, 15;
52, 15, 10, 10, 15, 52;
203, 52, 30, 25, 30, 52, 203;
...
Row 3 = (5, 2, 2, 5) = termwise products of (1, 1, 2, 5) and (5, 2, 1, 1) = (5*1, 1*2, 2*1, 5*1).
		

Crossrefs

Formula

Triangle read by rows, T(n,k) = A000110(n-k)*A000110(k)

Extensions

More terms from Philippe Deléham, Jan 29 2012
Showing 1-7 of 7 results.