cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A342111 a(n) = (-1)^n * Sum_{k=0..n} Stirling1(n,k) * Stirling1(n,n-k).

Original entry on oeis.org

1, 0, 1, 12, 193, 3980, 100805, 3034920, 105994833, 4215106728, 188097696345, 9309515255700, 506149663220641, 29989851619249236, 1923467938147053389, 132771455705186298000, 9814431285244231295265, 773520674985391641371280, 64752473306596841023424945
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2021

Keywords

Crossrefs

Programs

  • Magma
    [(&+[(-1)^n*StirlingFirst(n, k)*StirlingFirst(n, n-k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 03 2021
    
  • Mathematica
    Table[(-1)^n*Sum[StirlingS1[n, k]*StirlingS1[n, n-k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = (-1)^n*sum(k=0, n, stirling(n, k, 1)*stirling(n, n-k, 1)); \\ Michel Marcus, Feb 28 2021
    
  • Sage
    [sum( stirling_number1(n, k)*stirling_number1(n, n-k) for k in (0..n) ) for n in (0..30)] # G. C. Greubel, Jun 03 2021

Formula

a(n) ~ c * d^n * (n-1)!, where
d = A238261 = -(2*LambertW(-1,-exp(-1/2)/2))^2 / (1 + 2*LambertW(-1,-exp(-1/2)/2)) = 4.9108149645682558987515348052403521978987052817678471761394112...
c = 1/(4*sqrt(-LambertW(-1, -exp(-1/2)/2)) * sqrt(-1 - LambertW(-1, -exp(-1/2)/2))*Pi) = 0.06903826111269387517867145566264007373042059749428879149076344304196548... - Vaclav Kotesovec, Feb 28 2021, updated May 14 2025
a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)^2. - Seiichi Manyama, May 13 2025

A047797 a(n) = Sum_{k=0..n} Stirling2(n,k)^2.

Original entry on oeis.org

1, 1, 2, 11, 87, 952, 13513, 237113, 5016728, 125121009, 3615047527, 119384499720, 4455637803543, 186152008588691, 8636436319397292, 441871067839416319, 24781002306869712365, 1515279889256750470086, 100546673139756241189021
Offset: 0

Views

Author

Keywords

Comments

If S is the lower matrix of Stirling numbers of the second kind, this sequence (without the first term 1) is the diagonal of the matrix S.Transpose[S]. - Sergio Falcon, May 02 2007

Crossrefs

Programs

  • GAP
    List([0..20], n-> Sum([0..n], k-> Stirling2(n,k)^2 )); # G. C. Greubel, Aug 07 2019
  • Magma
    [(&+[StirlingSecond(n,k)^2: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 07 2019
    
  • Maple
    seq(add(Stirling2(n, k)^2, k = 0..n), n = 0..20); # G. C. Greubel, Aug 07 2019
  • Mathematica
    Table[Sum[StirlingS2[n,k]^2,{k,0,n}],{n,0,20}] (* Emanuele Munarini, Jul 01 2011 *)
  • Maxima
    makelist(sum(stirling2(n,k)^2,k,0,n),n,0,20); /* Emanuele Munarini, Jul 01 2011 */
    
  • PARI
    {a(n) = sum(k=0,n, stirling(n,k,2)^2)};
    vector(20, n, n--; a(n)) \\ G. C. Greubel, Aug 07 2019
    
  • Sage
    [sum(stirling_number2(n,k)^2 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
    

A238258 Decimal expansion of a constant related to A002465.

Original entry on oeis.org

3, 0, 8, 8, 2, 7, 7, 3, 0, 4, 7, 4, 1, 7, 4, 0, 1, 7, 9, 1, 1, 5, 8, 4, 0, 0, 8, 2, 0, 2, 5, 4, 3, 8, 2, 7, 6, 8, 3, 6, 4, 4, 4, 8, 9, 7, 1, 4, 2, 0, 1, 3, 8, 7, 6, 7, 2, 4, 7, 7, 3, 0, 1, 2, 1, 7, 6, 5, 1, 6, 8, 1, 2, 7, 8, 8, 2, 6, 6, 6, 6, 9, 5, 2, 0, 3, 2, 7, 1, 1, 3, 0, 9, 6, 1, 9, 4, 6, 0, 0, 9, 7, 3, 0, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			3.08827730474174017911584...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[-2/LambertW[-2/E^2]/(2+LambertW[-2/E^2]), 105]][[1]]

Formula

Equals lim n->infinity (A002465(n)/(n-1)!)^(1/n).
Equals -2 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))).
Equals -2 / (A226775 * (2 + A226775)).
Showing 1-3 of 3 results.