cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A292870 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of k-th power of continued fraction 1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 5, 0, 1, 4, 9, 14, 15, 0, 1, 5, 14, 28, 44, 52, 0, 1, 6, 20, 48, 93, 154, 203, 0, 1, 7, 27, 75, 169, 333, 595, 877, 0, 1, 8, 35, 110, 280, 624, 1289, 2518, 4140, 0, 1, 9, 44, 154, 435, 1071, 2442, 5394, 11591, 21147, 0, 1, 10, 54, 208, 644, 1728, 4265, 10188, 24366, 57672, 115975, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2017

Keywords

Comments

A(n,k) is the n-th term of the k-fold convolution of Bell numbers with themselves. - Alois P. Heinz, Feb 12 2019

Examples

			G.f. of column k: A_k(x) = 1 + k*x + k*(k + 3)*x^2/2 + k*(k^2 + 9*k + 20)*x^3/6 + k*(k^3 + 18*k^2 + 107*k + 234)*x^4/24 + k*(k^4 + 30*k^3 + 335*k^2 + 1770*k + 4104)*x^5/120 + ...
Square array begins:
  1,   1,    1,    1,    1,     1,  ...
  0,   1,    2,    3,    4,     5,  ...
  0,   2,    5,    9,   14,    20,  ...
  0,   5,   14,   28,   48,    75,  ...
  0,  15,   44,   93,  169,   280,  ...
  0,  52,  154,  333,  624,  1071,  ...
		

Crossrefs

Columns k=0-4 give A000007, A000110, A014322, A014323, A014325.
Rows n=0-3 give A000012, A001477, A000096, A005586.
Antidiagonal sums give A137551.
Main diagonal gives A292871.
Cf. A205574 (another version).

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
         `if`(k=1, add(A(n-j, k)*binomial(n-1, j-1), j=1..n),
         (h-> add(A(j, h)*A(n-j, k-h), j=0..n))(iquo(k,2)))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, May 31 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 - x + ContinuedFractionK[-i x^2, 1 - (i + 1) x, {i, 1, n}])^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))))^k, a continued fraction.

A205574 Triangle T(n,k), 0<=k<=n, given by (0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 15, 14, 9, 4, 1, 0, 52, 44, 28, 14, 5, 1, 0, 203, 154, 93, 48, 20, 6, 1, 0, 877, 595, 333, 169, 75, 27, 7, 1, 0, 4140, 2518, 1289, 624, 280, 110, 35, 8, 1, 0, 21147, 11591, 5394, 2442, 1071, 435, 154, 44, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 29 2012

Keywords

Comments

Bell convolution triangle ; g.f. for column k : (x*B(x))^k with B(x) g.f. for A000110 (Bell numbers).
Riordan array (1, x*B(x)), when B(x) the g.f. of A000110.
Row sums are in A137551.

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,  1;
  0,   5,   5,  3,  1;
  0,  15,  14,  9,  4,  1;
  0,  52,  44, 28, 14,  5, 1;
  0, 203, 154, 93, 48, 20, 6, 1;
  ...
		

Crossrefs

Cf. Columns : A000007, A000110, A014322, A014323, A014325 ; Diagonals : A000012, A001477, A000096, A005586.
Another version: A292870.
T(2n,n) gives: A292871.

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> combinat:-bell(n-1)); # Peter Luschny, Oct 19 2022

Formula

Sum_{k=0..n} T(n,k) = A137551(n), n>0.

A309955 a(n) = [x^n] (1 + p(x))^n, where p(x) is the g.f. of A000040.

Original entry on oeis.org

1, 2, 10, 59, 362, 2287, 14707, 95762, 629386, 4166627, 27743445, 185602188, 1246543559, 8399791922, 56762121398, 384513835219, 2610322687850, 17753944125159, 120954505004605, 825274753259894, 5638438272353597, 38569743775323134, 264127692090124488
Offset: 0

Views

Author

Alois P. Heinz, Aug 24 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, ithprime(n),
          (h-> add(b(j, h)*b(n-j, i-h), j=0..n))(iquo(i, 2))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..31);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 1, Prime[n],
         Function[h, Sum[b[j, h]*b[n-j, i-h], {j, 0, n}]][Quotient[i, 2]]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)
Showing 1-3 of 3 results.