cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292890 Primes of the form 2^r * 17^s - 1.

Original entry on oeis.org

3, 7, 31, 67, 127, 271, 577, 1087, 2311, 8191, 78607, 131071, 524287, 1114111, 2367487, 2672671, 17825791, 42762751, 90870847, 606076927, 2147483647, 5151653887, 5815734271, 9697230847, 329705848831, 474351505987, 700624928767, 892896952447, 1168231104511, 2482491097087
Offset: 1

Views

Author

Muniru A Asiru, Sep 26 2017

Keywords

Comments

Primes of the forms 2^r * b^s - 1 where b = 1, 5, 7, 11, 13 are A000668 (Mersenne prime exponents), A077313, A077314, A077315 and A173062. When b = 3 we get A005105 with initial term 2.
For n > 1, all terms are congruent to 1 (mod 3).
Also, these are prime numbers p for which (34^p)/(p+1) is an integer.

Examples

			With n = 1, a(1) = 2^2 * 17^0 - 1 = 3.
With n = 4, a(4) = 2^2 * 17^1 - 1 = 67.
list of (r, s): (2, 0), (3, 0), (5, 0), (2, 1), (3, 1), (7, 0), (4, 1), (1, 2), (6, 1), (3, 2), (13, 0), (4, 3), (17, 0), (19, 0), (16, 1), (13, 2), (5, 4), (20, 1), (9, 4), (6, 5).
		

Crossrefs

Cf. Sequences of primes of the forms 2^n * q^s - 1: A000668 (q = 1), A005105 (q = 3), A077313 (q = 5), A077314 (q = 7), A077315 (q = 11), A173062 (q = 13).

Programs

  • GAP
    K:=10^7+1;; # to get all terms <= K.
    A:=Filtered(Filtered([1..K], i->i mod 3=1),IsPrime);;    I:=[17];;
    B:=List(A,i->Elements(Factors(i+1)));;
    C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i)));;
    A292890:=Concatenation([3],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i]));
    
  • PARI
    isok(p) = isprime(p) && (denominator((34^p)/(p+1)) == 1); \\ Michel Marcus, Sep 27 2017

Extensions

More terms from Jinyuan Wang, Feb 23 2020