A292890 Primes of the form 2^r * 17^s - 1.
3, 7, 31, 67, 127, 271, 577, 1087, 2311, 8191, 78607, 131071, 524287, 1114111, 2367487, 2672671, 17825791, 42762751, 90870847, 606076927, 2147483647, 5151653887, 5815734271, 9697230847, 329705848831, 474351505987, 700624928767, 892896952447, 1168231104511, 2482491097087
Offset: 1
Keywords
Examples
With n = 1, a(1) = 2^2 * 17^0 - 1 = 3. With n = 4, a(4) = 2^2 * 17^1 - 1 = 67. list of (r, s): (2, 0), (3, 0), (5, 0), (2, 1), (3, 1), (7, 0), (4, 1), (1, 2), (6, 1), (3, 2), (13, 0), (4, 3), (17, 0), (19, 0), (16, 1), (13, 2), (5, 4), (20, 1), (9, 4), (6, 5).
Crossrefs
Programs
-
GAP
K:=10^7+1;; # to get all terms <= K. A:=Filtered(Filtered([1..K], i->i mod 3=1),IsPrime);; I:=[17];; B:=List(A,i->Elements(Factors(i+1)));; C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i)));; A292890:=Concatenation([3],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i]));
-
PARI
isok(p) = isprime(p) && (denominator((34^p)/(p+1)) == 1); \\ Michel Marcus, Sep 27 2017
Extensions
More terms from Jinyuan Wang, Feb 23 2020
Comments