cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293012 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1 - x)^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 13, 1, 1, 1, 7, 31, 73, 1, 1, 1, 9, 55, 241, 501, 1, 1, 1, 11, 85, 529, 2261, 4051, 1, 1, 1, 13, 121, 961, 6121, 24781, 37633, 1, 1, 1, 15, 163, 1561, 13041, 82711, 309835, 394353, 1, 1, 1, 17, 211, 2353, 24101, 207001, 1273567, 4342241, 4596553, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 28 2017

Keywords

Examples

			E.g.f. of column k: A_k(x) =  1 + x/1! + (2*k + 1)*x^2/2! + (3*k^2 + 9*k + 1)*x^3/3! + (4*k^3 + 36*k^2 + 32*k + 1)*x^4/4! + ...
Square array begins:
  1,   1,    1,    1,     1,     1,  ...
  1,   1,    1,    1,     1,     1,  ...
  1,   3,    5,    7,     9,    11,  ...
  1,  13,   31,   55,    85,   121,  ...
  1,  73,  241,  529,   961,  1561,  ...
  1, 501, 2261, 6121, 13041, 24101,  ...
		

Crossrefs

Columns k=0..4 give A000012, A000262, A082579, A091695, A361283.
Main diagonal gives A293013.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[x/(1 - x)^k], {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
  • PARI
    T(n, k) = n!*sum(j=0, n, binomial(n+(k-1)*j-1, n-j)/j!); \\ Seiichi Manyama, Mar 06 2023

Formula

E.g.f. of column k: exp(x/(1 - x)^k).
From Seiichi Manyama, Oct 21 2017: (Start)
Let B(j,k) = (-1)^(j-1)*binomial(-k,j-1) for j>0 and k>=0.
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j*B(j,k)*A(n-j,k)/(n-j)! for n > 0. (End)
A(n,k) = n! * Sum_{j=0..n} binomial(n+(k-1)*j-1,n-j)/j!. - Seiichi Manyama, Mar 06 2023