A293013 a(n) = n! * [x^n] exp(x/(1 - x)^n).
1, 1, 5, 55, 961, 24101, 818821, 36053515, 1984670465, 132825475081, 10583425959301, 988018789759871, 106673677280748865, 13172700275176482925, 1842428769970603518341, 289406832942160060794451, 50677793314733587473331201, 9829328870566195730521433105
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..274
Programs
-
Mathematica
Table[n! SeriesCoefficient[Exp[x/(1 - x)^n] , {x, 0, n}], {n, 0, 17}] (* or *) nmax = 20; Join[{1}, Table[n!*Sum[Binomial[(n-1)*(k+1), k*n - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 24 2025 *)
Formula
a(n) = A293012(n,n).
For n > 0, a(n) = n! * Sum_{k=1..n} binomial((n-1)*(k+1), k*n - 1)/k!. - Vaclav Kotesovec, Aug 24 2025
log(a(n)) ~ n * (2*log(n) - log(log(n)) - 1 - log(2) + log(log(n))/log(n) + (1 + 2*log(2))/(2*log(n))). - Vaclav Kotesovec, Aug 25 2025
Comments