A293040 E.g.f.: exp(1 + x + x^2/2! + x^3/3! + x^4/4! - exp(x)).
1, 0, 0, 0, 0, -1, -1, -1, -1, -1, 125, 461, 1253, 3002, 6720, -111684, -978758, -5246983, -22948029, -89534309, 164027151, 5722510249, 55413784239, 393256686307, 2377996545081, 7807749195198, -46231762188586, -1125536160278906, -12849721017510166
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..593
Crossrefs
Programs
-
Maple
seq(factorial(n)*coeftayl(exp(1+x+x^2/2!+x^3/3!+x^4/4!-exp(x)), x = 0, n),n=0..50); # Muniru A Asiru, Oct 06 2017
-
PARI
my(x='x+O('x^66)); Vec(serlaplace(exp(-exp(x)+1+x+x^2/2+x^3/6+x^4/24)))
Formula
a(0) = 1; a(n) = -Sum_{k=5..n} binomial(n-1,k-1) * a(n-k). - Ilya Gutkovskiy, Nov 20 2020