cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293053 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. Product_{i>k} exp(x^i).

Original entry on oeis.org

1, 1, 1, 1, 0, 3, 1, 0, 2, 13, 1, 0, 0, 6, 73, 1, 0, 0, 6, 36, 501, 1, 0, 0, 0, 24, 240, 4051, 1, 0, 0, 0, 24, 120, 1920, 37633, 1, 0, 0, 0, 0, 120, 1080, 17640, 394353, 1, 0, 0, 0, 0, 120, 720, 10080, 183120, 4596553, 1, 0, 0, 0, 0, 0, 720, 5040, 100800, 2116800, 58941091
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2017

Keywords

Examples

			Square array begins:
    1,   1,   1,   1, ...
    1,   0,   0,   0, ...
    3,   2,   0,   0, ...
   13,   6,   6,   0, ...
   73,  36,  24,  24, ...
  501, 240, 120, 120, ...
		

Crossrefs

Columns k=0..3 give A000262, A052845, A293049, A293050.
Rows n=0..1 give A000012, A000007.
Main diagonal gives A000007.
A(n,n-1) gives A000142(n).

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          A(n-j, k)*binomial(n-1, j-1)*j!, j=1+k..n))
        end:
    seq(seq(A(n,d-n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 29 2017
  • Mathematica
    A[0, ] = 1; A[n, k_] /; n <= k = 0; A[n_, k_] := A[n, k] = Sum[(i+1)! Binomial[n-1, i] A[n-1-i, k], {i, k, n-1}];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Nov 07 2020 *)
  • Ruby
    def f(n)
      return 1 if n < 2
      (1..n).inject(:*)
    end
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << (k..i - 1).inject(0){|s, j| s + f(j + 1) * ncr(i - 1, j) * ary[i - 1 - j]}}
      ary
    end
    def A293053(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A293053(20)

Formula

E.g.f. of column k: exp(x^(k+1)/(1-x)).
A(0,k) = 1, A(1,k) = A(2,k) = ... = A(k,k) = 0 and A(n,k) = Sum_{i=k..n-1} (i+1)!*binomial(n-1,i)*A(n-1-i,k) for n > k.
A(n,k) = 2*(n-1) * A(n-1,k) - (n-1)*(n-2) * A(n-2,k) + (k+1)!*binomial(n-1,k) * A(n-1-k,k) - k*(k+1)!*binomial(n-1,k+1) * A(n-2-k,k) for n > k+1. - Seiichi Manyama, Mar 15 2023